

JPype documentation

JPype is a Python module to provide full access to Java from within Python. It
allows Python to make use of Java specific libraries, explore and visualize
Java structures, develop and test Java libraries, make use of scientific
computing, and much more. By enabling the use of Python for rapid prototyping
and Java for strong typed production code, JPype provides a powerful
environment for engineering and code development.

Unlike Jython, JPype does not achive this by re-implementing Python, but
instead by interfacing both virtual machines at the native level. This
shared memory based approach achieves good computing performance, while
providing the access to the entirety of CPython and Java libraries.

Parts of the documentation

	Installation
	Binary Install

	Source Install

	Path requirements

	Known Bugs/Limitations

	JPype User Guide
	JPype Introduction

	JPype Concepts

	JPype Types

	Controlling the JVM

	Customization

	Collections

	Working with NumPy

	Implementing Java interfaces

	Concurrent Processing

	Miscellaneous topics

	Java QuickStart Guide
	Starting JPype

	Classes/Objects

	Exceptions

	Primitives

	Strings

	Arrays

	Collections

	Reflection

	Implements and Extension

	API Reference
	JVM Functions

	Class importing

	Class Factories

	Java Types

	Threading

	Decorators

	Proxies

	Customized Classes

	Modules

	JImport
	1) Import of the package path

	2) Import of the package path as a module

	3) Import a class from an object

	Import caveats

	Changelog

	Developer Guide
	Overview

	jpype module

	_jpype CPython module

	Java Slots

	CPython API layer

	C++ JNI layer

	Java native code

	Tracing

	Debugging issues

	Future directions

Indices and tables

	Index

	Module Index

	Search Page

Installation

JPype is available either as a pre-compiled binary for Anaconda, or may be
built from source though various methods.

Binary Install

JPype can be installed as pre-compiled binary if you are using the Anaconda [https://anaconda.org] Python stack. Binaries are available for Linux, OSX,
and windows on conda-forge.

	Ensure you have installed Anaconda/Miniconda. Instructions can be found
here [http://conda.pydata.org/docs/install/quick.html].

	Install from
the conda-forge software channel:

conda install -c conda-forge jpype1

Source Install

Installing from source requires:

	Python

	JPype works CPython 3.5 or later. Both the runtime and the development
package are required.

	Java

	Either the Sun/Oracle JDK/JRE Variant or OpenJDK.

JPype source distribution includes a copy of the Java JNI header
and precompiled Java code, thus the Java Development Kit (JDK) is not required.
JPype has been tested with Java versions from Java 1.7 to Java 13.

	C++

	A C++ compiler which matches the ABI used to build CPython.

	JDK

	(Optional) JPype contains sections of Java code. These sections are
precompiled in the source distribution, but must be built when installing
directly from the git repository.

Once these requirements have been met, one can use pip to build from either the
source distribution or directly from the repository. Specific requirements from
different achitectures are listed below.

Build using pip

JPype may be built and installed with one step using pip.

To install the latest JPype, use:

pip install JPype1

This will install JPype either from source or binary distribution, depending on
your operating system and pip version.

To install from the current github master use:

pip install git+https://github.com/jpype-project/jpype.git

More details on installing from git can be found at Pip install [https://pip.pypa.io/en/stable/reference/pip_install/#git]. The git version
does not include a prebuilt jar the JDK is required.

Build and install manually

JPype can be built entirely from source.

1. Get the JPype source

The JPype source may be acquired from either
github [https://github.com/jpype-project/jpype] or
from PyPi [http://pypi.python.org/pypi/JPype1].

2. Build the source with desired options

Compile JPype using the included setup.py script:

python setup.py build

The setup script recognizes several arguments.

	--enable-build-jar

	Force setup to recreate the jar from scratch.

	--enable-tracing

	Build a verison of JPype with full logging to the
console. This can be used to diagnose tricky JNI
issues.

After building, JPype can be tested using the test bench. The test
bench requires JDK to build.

3. Test JPype with (optional):

python setup.py test

4. Install JPype with:

python setup.py install

If it fails…

Most failures happen when setup.py is unable to find the JDK home directory
which shouble be set in the enviroment variable JAVA_HOME. If this
happens, preform the following steps:

	Identify the location of your systems JDK installation and explicitly passing
it to setup.py.

JAVA_HOME=/usr/lib/java/jdk1.8.0/ python setup.py install

	If that setup.py still fails please create an Issue on
github [https://github.com/jpype-project/jpype/issues?state=open] and
post the relevant logs.

Platform Specific requirements

JPype is known to work on Linx, OSX, and Windows. To make it easier to those
who have not built CPython modules before here are some helpful tips for
different machines.

Debian/Ubuntu

Debian/Ubuntu users will have to install g++ and python-dev.
Use:

sudo apt-get install g++ python-dev python3-dev

Windows

CPython modules must be built with the same C++ compiler used to build Python.
The tools listed below work for Python 3.5 to 3.8. Check with Python dev guide [https://devguide.python.org/setup/] for the latest instructions.

	Install your desired version of Python (3.5 or higher), e.g., Miniconda [https://docs.conda.io/en/latest/miniconda.html#windows-installers] is a good choice for users not yet
familiar with the language

	For Python 3 series, Install either 2017 or 2019 Visual Studio.
Microsoft Visual Studio 2019 Community Edition [https://visualstudio.microsoft.com/downloads/] is known to work.

From the Python developer page:

When installing Visual Studio 2019, select the Python development workload and
the optional Python native development tools component to obtain all of the
necessary build tools. If you do not already have git installed, you can find
git for Windows on the Individual components tab of the installer.

When building for windows you must use the Visual Studio developer command
prompt.

Path requirements

On certain systems such as Windows 2016 Server, the JDK will not load properly
despite JPype properly locating the JVM library. The work around for this
issue is add the JRE bin directory to the system PATH. Apparently, the
shared library requires dependencies which are located in the bin directory.
If a JPype fails to load despite having the correct JAVA_HOME and
system architecture, it may be this issue.

Known Bugs/Limitations

	Java classes outside of a package (in the <default>) cannot be
imported.

	Because of lack of JVM support, you cannot shutdown the JVM and then
restart it. Nor can you start more than one copy of the JVM.

	Mixing 64 bit Python with 32 bit Java and vice versa crashes on import
of the jpype module.

JPype User Guide

JPype Introduction

JPype is a Python module to provide full access to Java from within Python.
Unlike Jython, JPype does not achive this by re-implementing Python, but
instead by interfacing both virtual machines at the native level. This
shared memory based approach achieves good computing performance, while
providing the access to the entirety of CPython and Java libraries.
This approach allows direct memory access between the two machines,
implementation of Java interfaces in Python, and even use of Java threading.

JPype Use Cases

Here are three typical reasons to use JPype.

	Access to a Java library from a Python program (Python oriented)

	Visualization of Java data structures (Java oriented)

	Interactive Java and Python development including scientific and mathematical
programming.

Let’s explore each of these options.

Case 1: Access to a Java library

Suppose you are a hard core Python programmer. You can easily use lambdas,
threading, dictionary hacking, monkey patching, been there, done that. You are
hard at work on your latest project but you just need to pip in the database
driver for your customers database and you can call it a night. Unfortunately,
it appears that your customers database will not connect to the Python database
API. The whole thing is custom and the customer isn’t going to supply you with
a Python version. They did sent you a Java driver for the database but fat
lot of good that will do for you.

Stumbling through the internet you find a module that says it can natively
load Java packages as Python modules. Well, it worth a shot…

So first thing the guide says is that you need to install Java and set up
a JAVA_HOME environment variable pointing to the JRE. Then start the
JVM with classpath pointed to customers jar file. The customer sent over
an example in Java so you just have to port it into Python.

package com.paying.customer;

import com.paying.customer.DataBase

public class MyExample {
 public void main(String[] args) {
 Database db = new Database("our_records");
 try (DatabaseConnection c = db.connect())
 {
 c.runQuery();
 while (c.hasRecords())
 {
 Record record = db.nextRecord();
 ...
 }
 }
 }
}

It does not look too horrible to translate. You just need to look past all
those pointless type declarations and meaningless braces. Once you do, you
can glue this into Python and get back to what you really love, like performing
dictionary comprehensions on multiple keys.

You glance over the JPype quick start guide. It has a few useful patterns…
set the class path, start the JVM, remove all the type declarations, and you are done.

Boiler plate stuff to start the module
import jpype
import jpype.imports
from jpype.types import *

Launch the JVM
jpype.startJVM(classpath=['jars/database.jar'])

import the Java modules
from com.paying.customer import DataBase

Copy in the patterns from the guide to replace the example code
db = Database("our_records")
with db.connect() as DatabaseConnection:
 c.runQuery()
 while c.hasRecords():
 record = db.nextRecord()
 ...

Launch it in the interactive window. You can get back to programming in Python
once you get a good night sleep.

Case 2: Visualization of Java structures

Suppose you are a hard core Java programmer. Weakly typed languages are for
wimps, if it isn’t garbage collected it is garbage. Unfortunately your latest
project has suffered a nasty data structure problem in one of the threads. You
managed to capture the data structure in a serialized form but if you could just
make graph and call a few functions this would be so much easier. But the
interactive Java shell that you are using doesn’t really have much in the way of
visualization and your don’t have time to write a whole graphing applet just to
display this dataset.

So poking around on the internet you find that Python has exactly the
visualization that you need for the problem, but it only runs in CPython. So
in order to visualize the structure, you need to get it into Python, extract
the data structures and, send it to the plotting routine.

You install conda, follow the install instructions to connect to conda-forge,
pull JPype1, and launch the first Python interactive environment that appear to
produce a plot.

You get the shell open and paste in the boilerplate start commands, and load
in your serialized object.

import jpype
import jpype.imports

jpype.startJVM(classpath = ['jars/*', 'test/classes'])

from java.nio.file import Files, Paths
from java.io import ObjectInputStream

with Files.newInputStream(Paths.get("myobject.ser") as stream:
 ois = new ObjectInputStream(stream)
 obj = ois.readObject()

print(obj) # prints org.bigstuff.MyObject@7382f612

It appears that the structure is loaded. The problematic structure requires you
call the getData method with the correct index.

d = obj.getData(1)

> TypeError: No matching overloads found for org.bigstuff.MyObject.getData(int),
> options are:
 public double[] org.bigstuff.MyObject.getData(double)
 public double[] org.bigstuff.MyObject.getData(int)

Looks like you are going to have to pick the right overload as it can’t
figure out which overload to use. Darn weakly typed language, how to get
the right type in so that you can plot the right data. It says that
you can use the casting operators.

from jpype.types import *
d = obj.getData(JInt(1))
print(type(d)) # prints double[]

Great. Now you just need to figure out how to convert from a Java array into
our something our visualization code can deal with. As nothing indicates that
you need to convert the array, you just copy out of the visualization tool
example and watch what happens.

import matplot.pyplot as plt
plt.plot(d)
plt.show()

A graph appears on the screen. Meaning that NumPy has not issue dealing with
Java arrays. It looks like ever 4th element in the array is zero.
It must be the PR the new guy put in. And off you go back to the wonderful
world of Java back to the safety of curly braces and semicolons.

Case 3: Interactive Java

Suppose you are a laboratory intern running experiments at Hawkins National
Laboratory. (For the purpose of this exercise we will ignore the fact that
Hawkins was shut down in 1984 and Java was created in 1995). You have the test
subject strapped in and you just need to start the experiment. So you pull up
Jupyter notebook your boss gave you and run through the cells. You need to
added some heart wave monitor to the list of graphed results.

The relevant section of the API for the Experiment appears to be

package gov.hnl.experiment;

public interface Monitor {
 public void onMeasurement(Measurement measurement);
}

public interface Measurement {
 public double getTime();
 public double getHeartRate();
 public double getBrainActivity();
 public double getDrugFlowRate();
 public boolean isNoseBleeding();
}

public class Experiment {
 public void addCondition(Instant t, Condition c);
 public void addMoniter(Monitor m);
 public void run();
}

The notebook already has all the test conditions for the experiment set up
and the JVM is started, so you just need to implement the monitor.

Based on the previous examples, you start by defining a monitor class

from jpype import JImplements, JOverride
from gov.hnl.experiment import Monitor

@JImplements(Monitor)
class HeartMonitor:
 def __init__(self):
 self.readings = []
 @JOverride
 def onMeasurement(self, measurement):
 self.readings.append([measurement.getTime(), measurement.getHeartRate()])
 def getResults(self):
 return np.array(self.readings)

There is a bit to unpack here. You have implemented a Java class from within Python.
The Java implementation is simply an ordinary Python class which has be
decorated with @JImplements and @JOverride. When you forgot to place
the @JOverride, it gave you the response:

NotImplementedError: Interface 'gov.hnl.experiment.Monitor' requires
method 'onMeasurement' to be implemented.

But once you added the @JOverride, it worked properly. The subject appears
to be getting impatient so you hurry up and set up a short run to make sure it
is working.

hm = HeartMonitor()
experiment.addMonitor(hm)
experiment.run()
readings = hm.getResults()
plt.plot(readings[:,0], readings[:,1)
plt.show()

To your surprise, it says unable to find method addMonitor with an error message:

AttributeError: 'gov.hnl.experiment.Experiment' object has no attribute 'addMonitor'

You open the cell and type experiment.add<TAB>. The line completes with
experiment.addMoniter. Whoops, looks like there is typo in the interface.
You make a quick correction and see a nice plot of the last 30 seconds pop up
in a window. Job well done, so you set the runtime back to one hour. Looks
like you still have time to make the intern woodlands hike and forest picnic.
Though you wonder if maybe next year you should sign up for another laboratory.
Maybe next year, you will try to sign up for those orbital lasers the President
was talking about in the March. That sounds like real fun.

(This advanced demonstration utilized the concept of Proxies and
Code completion)

The JPype Philosophy

JPype is designed to allow the user to exercise Java as fluidly as
possible from within Python. We can break this down into a few specific
design goals.

	Make Java appear Pythonic. Make it so a Python programmer feels
comfortable making use of Java concepts. This means making use of Python
concepts to create very Python looking code and at times bending Python
concepts to conform to Java’s expectations.

	Make Python appear like Java. Present concepts from Java with a syntax
that resembles Java so that Java users can work with Python without a huge
learning curve.

	Present everything that Java has to offer to Python. Every
library, package, and Java feature if possible should be accessible.
The goal of bridge is to open up places and not to restrict flow.

	Keep the design as simple as possible. Mixing languages is already complex
enough so don’t required the user to learn a huge arsenal of unique methods.
Instead keep it simple with well defined rules and reuse
these concepts. For example, all array types originate from JArray, and
thus using one can also use isinstance to check if a class is an array
type. Rather than introducing factory that does a similar job to an
existing one, instead use a keyword argument on the current factory.

	Favor clarity over performance. This doesn’t mean not trying to optimize
paths, but just as premature optimization is the bane of programmers,
requiring writing to maximize speed is a poor long term choice, especially
in a language such as Python were weak typing can promote bit rot.

	If a new method has to be introduced, make look familiar.
Java programmers look to a method named “of” to convert to a type on
factories such as a Stream, thus JArray.of converts a Python NumPy array
to Java. Python programmers expect that memory backed objects can be converted
into bytes for rapid transfer using a memory view, thus
memoryview(array) will perform that task.

	Provide an obvious way for both Python and Java programmers to perform tasks.
On this front JPype and Python disagree. In Python’s philosophy there should
be one – and preferably only one – obvious way to do things. But we
are bridging two worlds and thus obviousness is in the eye of the beholder.

The end result is that JPype has a small footprint while providing
access to Java (and other JVM based languages) with a minimum of effort.

Languages other than Java

JPype is primarily focused on providing the best possible wrapper for Java
in Python. However, the Java Virtual Machine (JVM) is used for many popular
languages such a Kotlin and Scala. As such JPype can be used for any language
which used the JVM.

That said each language has its own special properties that tend to be
represented in different ways. If you would like JPype fully to operate on your
particular language the following is required.

	Set up a test bench for your language under the test directory. Use ivy
to pull in the required jar files required to run it and exercise each of
the required language features that need to be exercised.

	Write a language specific quick start guide for your language defining
how things should appear in both your language of choice and within Python
highlighting those things that are different from how Java.

	Set up a test harness that exercises your language for each language feature
and place a setup script like test_java that builds the harness.

Alternatives

JPype is not the only Python module of its kind that acts as a bridge to
Java. Depending on your programming requirements, one of the alternatives
may be a better fit. Specifically JPype is designed for clarity and high
levels of integration between the Python and Java virtual machine. As such
it makes use of JNI and thus inherits all of the benefits and limitations
that JNI imposes. With JPype, both virtual machines are running in the
same process and are sharing the same memory space and threads. JPype can
thus intermingle Python and Java threads and exchange memory quickly. But by
extension you can’t start and stop the JVM machine but instead must keep
both machines throughout the lifespan of the program. High integration means
tightly coupled and thus it embodies the musketeers motto. If Python crashes,
so does Java as they only have one process to live in.

A few alternatives with different philosophies and limitations are given in the
following section. Please take my review comments with the appropriate grain of
salt. When I was tasked with finding a replacement for Matlab Java integration
for our project test bench, I evaluated a number of alternatives
Python bridge codes. I selected JPype primarily because it presented
the most integrated API and documentation which would be suitable for getting
physicists up to speed quickly. Thus your criteria may yield a different
selection. Its underlying technology was underwhelming and thus I have had
the pleasure of many hours reworking stuff under the hood.

For more details on what you can’t do with JPype, please see Limitations.

Jython [https://jython.org/]

Jython is a reimplementation of Python in Java. As a result it has much lower
costs to share data structures between Java and Python and potentially much
higher level of integration. Noted downsides of Jython are that it has lagged
well behind the state of the art in Python; it has a limited selection of
modules that can be used; and the Python object thrashing is not particularly
well fit in Java virtual machine leading to some known performance issues.

Py4J [https://py4j.org/]

Py4J uses a remote tunnel to operate the JVM. This has the advantage that
the remote JVM does not share the same memory space and multiple JVMs can
be controlled. It provides a fairly general API, but the overall integration
to Python is as one would expect when operating a remote channel operating
more like an RPC front-end. It seems well documented and capable. Although
I haven’t done benchmarking, a remote access JVM will have a
transfer penalty when moving data.

Jep [https://github.com/ninia/jep]

Jep stands for Java embedded Python. It is a mirror image of JPype. Rather
that focusing on accessing Java from within Python, this project is geared
towards allowing Java to access Python as sub-interpreter. The syntax for
accessing Java resources from within the embedded Python is quite similar
with support for imports. Notable downsides are that although Python supports
multiple interpreters many Python modules do not, thus some of the advantages
of the use of Python many be hard to realize. In addition, the documentation
is a bit underwhelming thus it is difficult to see how capable it is from the
limited examples.

Javabridge [https://github.com/CellProfiler/python-javabridge/]

Javabridge is direct low level JNI control from Python. The integration level
is quite low on this, but it does serve the purpose of providing the JNI API
to Python rather than attempting to wrap Java in a Python skin. The downside
being of course you would really have to know a lot of JNI to make effective
use of it.

jpy [https://github.com/bcdev/jpy]

This is the most similar package to JPype in terms of project goals. They have
achieved more capabilities in terms of a Java from Python than JPype which does
not support any reverse capabilities. It is currently unclear if this project
is still active as the most recent release is dated 2014. The integration
level with Python is fairly low currently though what they do provide is a
similar API to JPype.

About this guide

The JPype User Guide is targeted toward programmers who are strong in either
Python who wish to make use of Java or those who are strong with Java and are
looking to use Python as a Java development tool. As such we will compare and
contrast the differences between the languages and provide examples suitable
to help illustrate how to translate from one language to the other on the
assumption that being strong in one language will allow you to easily grasp
the corresponding relations in the other. If you don’t have a strong
background in either language an appropriate language tutorial may be
necessary.

JPype will hide virtually all of the JNI layer such that there is no direct
access to JNI concepts. As such attempting to use JNI knowledge will likely
lead to incorrect assumptions such as incorrectly attempting to use JNI
naming and method signatures in the JPype API. Where JNI limitations do
appear we will discuss the consequences imposed in programming. No knowledge
of JNI is required to use this guide or JPype.

JPype only works with Python 3, thus all examples will be using Python
version 3 syntax and assume the use of the Python 3 new style object model.
The naming conventions of JPype follow the Java rules rather than those of
Python. This is a deliberate choice as it would be dangerous to try to
mangle Java method and field names into Python conventions and risk
a name collision. Thus if method must have Java conventions then the rest
of the module should follow the same pattern for consistency.

Getting JPype started

This document holds numerous JPype examples. For the purposes of clarity
the module is assumed to have been started with the following command

Import the module
import jpype

Allow Java modules to be imported
import jpype.imports

Import all standard Java types into the global scope
from jpype.types import *

Import each of the decorators into the global scope
from jpype import JImplements, JOverride, JImplementationFor

Start JVM with Java types on return
jpype.startJVM(convertStrings=False)

Import default Java packages
import java.lang
import java.util

This is not the only style used by JPype users. Some people feel it is
best to limit the number for symbols in the global scope and instead
start with a minimalistic approach.

import jpype as jp # Import the module
jp.startJVM(convertStrings=False) # Start the module

Either style is usable and we do not wish to force any particular style on the
user. But as the extra jp. tends to just clutter up the space and implies
that JPype should always be used as a namespace due to namespace conflicts, we
have favored the global import style. JPype only exposes 40 symbols total
including a few deprecated functions and classes. The 13 most commonly used
Java types are wrapped in a special module jpype.types which can be used to
import all for the needed factories and types with a single command without
worrying about importing potentially problematic symbols.

We will detail the starting process more later in the guide. See
Starting the JVM.

JPype Concepts

At its heart, JPype is about providing a bridge to use Java within Python.
Depending on your prospective that can either be a means of accessing Java
libraries from within Python or a way to use Java using Python syntax for
interactivity and visualization. This mean not only exposing a limited API but
instead trying to provide the entirety of the Java language with Python.

To do this, JPype maps each of the Java concepts to the nearest concept in
Python wherever they are similar enough to operate without confusion. We have
tried to keep this as Pythonic as possible, though it is never without some
rough edges.

Python and Java share many of the same concepts. Types, class, objects,
function, methods, and members. But in other places they are rather different.
Python lacks casting, type declarations, overloading, and many other features of
a strongly typed language, thus we must expose those concepts into the Python
syntax as best we can. Java for instance has class annotation and Python
have class decorators. Both serve the purpose of augmenting a class with
further information, but are very different in execution.

We have broken the mapping down in nine distinct concepts. Some
elements serve multiple functions.

	Type Factories

	These are meta classes that allow one to declare a particular
Java type in Python. The result of type factories are wrapper classes.
(JClass and JArray) Factories also exist to implement Java classes
from within Python (JProxy)

	Meta Classes

	These are classes to describe different properties of Java classes such as
to check if a class is an Interface. (JInterface)

	Base Classes

	These are JPype names for Java classes in Python that exist without importing
any specific Java class. Concepts such as Object, String, and Exception are
defined and can be used in instance checks. For example, to catch all Java
exceptions regardless of type, we would catch JException. These are mainly
for convenience though they do have some extra functionality. Most of these
functions are being phased out in favor of Java syntax. For example,
catching java.lang.Throwable will catch everything that JException
will catch. (Jarray, JObject, JString, and JException)

	Wrapper Classes

	These correspond to each Java class. Thus can be used to access static
variables, static methods, cast, and construct object. They are used
wherever a Java type would be used in the Java syntax such as creating an
array or accessing the class instance. These class wrappers are customized in
Python to allow a direct mapping from Java concepts to Python one. These
are all created dynamically corresponding to each Java class. For most
of this document we will refer to these simply as a “class”.
(java.lang.Object, java.lang.String, etc) Many wrappers
are customized to match Python abstract base classes ABC
(java.util.List, java.util.Map)

	Object Instances

	These are Java objects. They operate just like Python objects with
Java public fields mapped to Python attributes and Java methods to
Python methods. For this document we will refer to an object instance
simply as an “object”. The object instance is split into two halves. The
Python portion is referred to as the “handle” that points the Java
“instance”. The lifetime of the “instance” is tied to the handle thus
Java objects do not disappear until the Python handle is disposed of.
Objects can be cast to match the required type and hold methods and
fields.

	Primitive types

	Each of the 8 Java primitive types are defined. These are used to cast
to a Java type or to construct arrays. (JBoolean, JChar, JByte,
JShort, JInt, JLong, JFloat, and JDouble)

	Decorators

	Java has a number of keywords such as extending a class or implementing an
interface. Those pieces of meta data can’t directly be expressed with the
Python syntax, but instead have been been expressed as annotations that
can be placed on classes or functions to augment them with Java specific
information. (@JImplements, @JOverride, @JImplementationFor)

	Mapping Java syntax to Python

	Many Java concepts like try with resources can be mapped into Python
directly (as the with statement), or Java try, throw, catch mapping to
Python try, raise, except. Others such as synchronize do not have an exact
Python match. Those have instead been mapped to special functions
that interact with Python syntax..
(synchronized, with, try, import)

	JVM control functions

	The JVM requires specific actions corresponding to JNI functions in order
to start, shutdown, and define threading behavior. These top level control
functions are held in the jpype module. (startJVM, shutdownJVM)

We will detail each of these concepts in greater detail in the later sections.

Name mangling

When providing Java package, classes, methods, and fields to Python,
there are occasionally naming conflicts. For example, if one has a method
called with then it would conflict with the Python keyword with.
Wherever this occurs, JPype renames the offending symbol with a trailing
under bar. Java symbols with a leading or trailing under bars are consider to
be privates and may not appear in the JPype wrapper entirely with the exception
of package names.

The following Python words will trigger name mangling of a Java name:

	False

	None

	True

	and

	as

	async

	await

	def

	del

	elif

	except

	exec

	from

	global

	in

	is

	lambda

	nonlocal

	not

	or

	pass

	print

	raise

	with

	yield

JPype Types

Both Java and Python have a concept of a type. Every variable refers to an
object which has a defined type. A type defines the data that the variable is
currently holding and how that variable can be used. In this chapter we will
learn how Java and Python types relate to one another, how to create import
types from Java, and how to use types to create Java objects.

Stay strong in a weak language

Before we get into the details of the types that JPype provides, we first need
to contrast some of the fundamental language differences between Java and
Python. Python is inherently a weakly typed language. Any variable can take
any type and the type of a particular variable can change over the
lifetime of a program. Types themselves can be mutable as you can patch an
existing type to add new behaviors. Python methods can in principle take any
type of object as an argument, however if the interface is limited it will produce
a TypeError to indicate a particular argument requires a specific type. Python
objects and classes are open. Each class and object is basically a dictionary
storing a set of key value pairs. Types implemented in native C are often more
closed and thus can’t have their method dictionaries or data members altered
arbitrarily. But subject to a few restrictions based implementation, it is
pretty much the wild west.

In contrast, Java is a strongly typed language. Each variable can only take
a value of the specified class or a class that derives from the specified
class. Each Java method takes only a specific number and type of arguments.
The type and number are all checked at compile type to ensure there is
little possibility of error. As each method requires a specific number and type
of arguments, a method can be overloaded by having two different
implementations which take a different list of types sharing the same method
name. A primitive variable can never hold an object and it can only be converted
to or from other primitive types unless it is specifically cast to that type.
Java objects and classes are completely closed. The methods and fields for a
particular class and object are defined entirely at compile time. Though it is
possible create classes with a dictionary allowing expansion, this is not the
Java norm and no standard mechanism exists.

Thus we need to introduce a few Java terms to the Python vocabulary. These are
“conversion” and “cast”.

Java conversions

A conversion is a permitted change from an object of one type to another.
Conversions have three different degrees. These are: exact, implicit, and
explicit.

Exact conversions are those in which the type of an object is identical. In
Java each class has only one definition thus there is no need for an exact
conversion. But when dealing with Python we have objects that are effectively
identical for which exact conversion rules apply. For example, a Java string
and a Python string both bind equally well to a method which requires a string,
thus this is an exact conversion for the purposes of bind types.

The next level of conversion is implicit. An implicit conversion is one that
Java would perform automatically. For example converting a derived class to is
base class when setting a field would be an implicit conversion. Java defines
a number of other conversions such as converting a primitive to a boxed type
or from a boxed type back to a primitive as implicit conversions..

Of course not every cast is safe to perform. For example, converting an object
whose type is currently viewed as a base type to a derived type is not
performed automatically nor is converting from one boxed type to another. For
those operations the conversion must be explicitly requested, hence these are
explicit conversions. To request an explicit conversion an object must be
“cast” using a cast operator. In Java, a cast is requested by placing the type
name in parentheses in front of the object to be cast. Unfortunately, the same
syntax is not allowed in Python. Not every conversion is possible between Java
types. Types that cannot be converted are considerer to be conversion type “none”.

Details on the standard conversions provided by JPype are given in the section
Type Matching.

Java casting

To access a casting operation we use the casting JObject wrapper.
JObject accepts two arguments. The first argument is the object to convert and
the second is the type to cast to. The second argument should always be a Java
type specified using a class wrapper, a Java class instance, or a string.
Casting will also add a hidden class argument to the resulting object such that
it is treated as the cast type for the duration of that variable lifespan.
Therefore, a variable create by casting is stuck as that type and cannot revert
back to its original for the purposes of method resolution.

The object construction and casting are sometimes a bit blurry. For example,
when one casts a sequence to a Java list, we will end up constructing a new
Java list that contains the elements of the original Python sequence. In
general JPype constructors only provide access the Java constructor methods
that are defined in the Java documentation. Casting on the other hand is
entirely the domain of whatever JPype has defined including user defined casts.

Casting is performed through the Python class JObject. JObject is called
with two arguments which are the object to be cast and the type to cast too.
The cast first consults the conversion table to decide if the cast it permitted
and produces a TypeError if the conversion is not possible.

JObject also serves as a abstract base class for testing if an object
instance belongs to Java. All objects that belong to Java will return
true when tested with isinstance. Like Python’s sequence, JObject is an
abstract base class. No classes actual derive from JObject.

Of particular interest is the concept of Java null. In Java, null is a
typeless entity which can be placed wherever an object is taken to
indicate that the object is not available. The equivalent concept in Python is
None. Thus all methods that accept any object type that permit a null will
accept None as an augment with implicit conversion. However, sometime it is
necessary to pass an explicit type to the method resolution. To achieve this
in JPype use JObject(None, type) which will create a null pointer with the
desired type. To test if something is null we have to compare the handle to
None. This unfortunately trips up some code quality checkers. The idiom in
Python is obj is None, but as this only matches things that Python
considers identical, we must instead use obj==None.

Type enforcement appears in three different places within JPype. These are
whenever a Java method is called, whenever a Java field is set, and whenever
Python returns a value back to Java.

Method resolution

Because Java supports method overloading and Python does not, JPype wraps Java
methods as a “method dispatch”. The dispatch is a collection of all of the
methods from class and all of its parents which share the same name. The job
of the dispatch is chose the method to call.

Enforcement of the strong typing of Java must be performed at runtime within
Python. Each time a method is invoked, JPype must match against the list of
all possible methods that the class implements and choose the best
possible overload. For this reason the methods that appear in a JPype class
will not be the actual Java methods, but rather a “dispatch” whose job is
deciding which method should be called based on the type of the provided
arguments.

If no method is found that matches the provided arguments, the method dispatch
will produce a TypeError. This is the exact same outcome that Python uses
when enforcing type safety within a function. If a type doesn’t match a
TypeError will be produced.

Dispatch example

When JPype is unable to decide which overload of a method to call, the user
must resolve the ambiguity. This is where casting comes in.

Take for example the java.io.PrintStream class. This class has a variant of
the print and println methods!

So for the following code:

java.lang.System.out.println(1)

JPype will automatically choose the println(long) method, because the Python
int matches exactly with the Java long, while all the other numerical types
are only “implicit” matches. However, if that is not the version you
wanted to call you must cast it. In this case we will use a primitive
type to construct the correct type.

Changing the line thus:

java.lang.System.out.println(JByte(1)) # <--- wrap the 1 in a JByte

This tells JPype to choose the byte version. When dealing with Java types, JPype follows
the standard Java matching rules. Types can implicitly grow to larger types
but will not shrink without an explicit cast.

Primitive Types

Unlike Python, Java makes a distinction between objects and primitive data
types. Primitives represent the minimum data that can be manipulated by a
computer. These stand in contrast to objects which have the ability to contain any
combination of data types and object within themselves, and can be inherited
from.

Java primitives come in three flavors. The logical primitive boolean can
only take the logical value true and false. The textual primitive char
represents one character in a string. Numerical primitives are intended for
fixed point or floating point calculations. Numerical primitives come in many
sizes depending on how much storage is required. In Java, integer numerical
primitives are always signed and thus can only reach half their range in terms
of bits up or down relative to their storage size.

JPype has mapped each of the primitive types into Python classes. To avoid
conflicts with Python, JPype has named each primitive with a capital letter
J followed by the primitive name starting with an upper case letter.

	JBoolean

	A boolean is the logical primitive as it can only take values True and
False. It should properly be an extension of the Python concept bool
but that type is not extendable. Thus instead it must inherit from int.
This type is rarely seen in JPype as the values True and False
are considered an exact match to JBoolean argument. Methods which
return a JBoolean will always return a Python bool rather than
a Java primitive type.

	JChar

	A character is the textual primitive that corresponds to exactly one character
in a string. Or at least that was the concept at the time. Java characters
can only represent 16 bits. But there are currently 143,924
defined characters in Unicode. Thus, there are certain characters that
can only be represented as two Unicode characters. The textual primitives
are not intended to perform numerical functions, but are instead encoded.
As per the old joke, what does 1 plus 1 equal? Which of course the
correct answer is b. As such characters should not be treated as just
another unsigned short. Python has no concept of a textual only type.
Thus when returning a character type, we instead return a string length 1.
The actually JChar class is derived from a Python int and by
inheritance has all of the numerical operations associated with it.
There are of course lots of useful mathematical operations that can be performed
on textual primitives, but doing so risks breaking the encoding
and can result in uninterpretable data.

	JByte, Short, Int, Long

	These types represent fixed point quantities with ranges of 8, 16, 32, and
64 bits. Each of these type inherit from a Python int type. A method
or field returning an integer primitive will return a type derived from
int. Methods accepting an integer primitive will take either an
Java integer primitive or a Python int or anything that quacks like a
int so long as it can be converted into that primitive range without
truncation.

	JFloat, JDouble

	These two types hold floating point and correspond to either single point
(32 bit) or double point (64 bit) precision. Python does not have a concept
of precision and thus both of these derive from the Python type float.
As per Java rules numbers greater than the range correspond to the values
of positive and negative infinity. Conversions from Python types are
ranged check and will produce a OverflowError if the value doesn’t
fit into the request types. If an overflow error is not desired, first
cast the value into the request size prior to calling. Methods that return
a Java floating point primitive will always return a value derived from
float.

The classes for Java primitives are closed and should not be extended.
As with all Java values any information attached to the Python representation
is lost when passing that value to Java.

Objects & Classes

In contrast to primitive data type, objects can hold any combination of
primitives or objects. Thus they represent structured data. Objects can also
hold methods which operate on that data. Objects can inherit from one another.

However unlike Python, Java objects must have a fixed structure which defines
its type. These are referred to the object’s class. Here is a point of
confusion. Java has two different class concepts: the class definition and the
class instance. When you import a class or refer to a method using the class
name you are accessing the class definition. When you call getClass on an
object it returns a class instance. The class instance is a object whose
structure can be used to access the data and methods that define the class
through reflection. The class instance cannot directly access the fields or
method within a class but instead provides its own interface for querying the
class. For the purposes of this document a “class” will refer to the class
definition which corresponds to the Python concept of a class. Wherever the
Java reflection class is being referred to we will use the term “class
instance”. The term “type” is synonymous with a “class” in Java, though often
the term “type” is only used when inclusively discussing the type of primitives
and objects, while the term “class” generally refers to just the types
associated with objects.

All objects in Java inherit from the same base class java.lang.Object, but
Java does not support multiple inheritance. Thus each class can only inherit
from a single parent. Multiple inheritance, mix-ins, and diamond pattern are
not possible in Java. Instead Java uses the concept of an interface. Any Java
class can inherit as many interfaces as it wants, but these interfaces may not
contain any data elements. As they do not contain data elements there can
be no ambiguity as to what data a particular lookup.

The meta class JInterface is used to check if a class type is an interface
using isinstance. Classes that are pure interfaces cannot be instantiated,
thus, there is not such thing as an abstract instance. Therefore, every
Java object should have Objects cannot actual be pure interfaces. To
represent this in Python every interface inherits java.lang.Object methods
even through it does not have java.lang.Object as a parent. This ensures
that anonymous classes and lambdas have full object behavior.

Classes

In JPype, Java classes are instances of the Python type and function like
any ordinary Python class. However unlike Python types, Java classes are
closed and cannot be extended. To enforce extension restrictions, all Java
classes are created from a special private meta class called
_jpype._JClass. This gatekeeper ensures that the attributes of classes
cannot be changed accidentally nor extended. The type tree of Java is fixed
and closed.

All Java classes have the following functionality.

	Class constructor

	The class constructor is accessed by using the Python call syntax ().
This special method invokes a dispatch whenever the class is called
as a function. If an matching constructor is found a new Java instance
is created and a Python handle to that instance is returned. In the case
of primitive types, the constructor creates a Java value with the exact
type requested.

	Get attribute

	The Python . operator gets an attribute from a class with a specified
name. If no method or field exists a AttributeError will be raised.
For public static methods, the getattr will produce a Python descriptor which
can be called to invoke the static method. For public static fields, a Python
descriptor will be produced that allows the field to be get or set depending
on whether the field is final or not. Public instance methods and instance
fields will produce a function that can be applied to a Java object to
execute that method or access the field. Function accessors are
non-virtual and thus they can provide access to behaviors that have been
hidden by a derived class.

	Set attribute

	In general, JPype only allows the setting of public non-final fields. If you
attempt to set any attribute on an object that does not correspond to a
settable field it will produce an AttributeError. There is one exception
to this rule. Sometime it is necessary to attach addition private meta data to
classes and objects. Attributes that begin with an underbar are consider to be
Python private attributes. Private attributes handled by the default Python
attribute handler allowing these attributes to be attached to to attach data to
the Python handle. This data is invisible to Java and it is retained only on
the Python instance. If an object with Python meta data is passed to Java
and Java returns the object, the new Python handle will not contain any of the
attached data as this data was lost when the object was passed to Java.

	class_ Attribute

	For Java classes there is a special attribute called class. This
is a keyword in Python so name mangling applies. This is a class instance
of type java.lang.Class. It can be used to access fields and methods.

	Inner classes

	For methods and fields, public inner classes appear as attributes of
the class. These are regular types that can be used to construct objects,
create array, or cast.

	String

	The Java method toString is mapped into the Python function str(obj).

	Equality

	The Java method equals() has been mapped to Python == with special
augmentations for null pointers. Java == is not exposed directly
as it would lead to numerous errors. In principle, Java == should map
to the Python concept of is but it is not currently possible to overload
Python in such a way to achieve the desired effect.

	Hash

	The Java method hashCode is mapped to Python hash(obj) function.
There are special augmentations for strings and nulls. Strings will return
the same hash code as returned by Python so that Java strings and Python
strings produce the same dictionary lookups. Null pointers produce the
same hash value as None.

Java defines hashCode on many objects including mutable ones. Often
the hashCode for a mutable object changes when the object is changed.
Only use immutable Java object (String, Instant, Boxed types) as
dictionary keys or risk undefined behavior.

Java objects are instances of Java classes and have all of the methods defined
in the Java class including static members. However, the get attribute method
converts public instance members and fields into descriptors which act on
the object.

Now that we have defined the basics of Java objects and classes, we will
define a few special classes that operate a bit differently.

Array Classes

In Java all arrays are also objects, but they cannot define any methods beyond
a limited set of Java array operations. These operations have been mapped into
Python to their closest Python equivalent.

Arrays also have a special type factory to produce them. In principle
one can create an array class using JClass but the signature required
would need to use the proper name as required for the Java method
java.lang.Class.forName. Instead we call the factory to create a new
type to use.

The signature for JArray is JArray(type, [dims=1]). The type argument
accepts any Java type including primitives and constructs a new array class.
This class can be used to create new instances, cast, or as the input to
the array factory. The resulting object has a constructor method
which take either a number, which is the desired size of the array, or a
sequence which hold the elements of the array. If the members of the
initializer sequence are not Java members then each will be converted. If
any element cannot be converted a TypeError will be raised.

JArray is an abstract base class for all Java classes that are produced.
Thus, one can test if something is an array class using issubclass
and if Java object is an array using isinstance.

Java arrays provide a few additional Python methods:

	Get Item

	Arrays are of course a collection of elements. As such array elements can
be accessed using the Python [] operator. For multidimensional arrays
JPype uses Java style access with a series of index operations such
as jarray[4][2] rather than NumPy like multidimensional access.

	Get Slice

	Arrays can be accessed using a slice like a Python list.
The slice operator is [start:stop:step]. It should be noted that array
slice are in fact views to the original array so any alteration to
the slice will affect the original array. Array slices are cloned when
passed back to Java. To force a clone immediately, use the clone method.
Please note that applying the slice operator to a slice produces a new
slice. Thus there can sometimes be an ambiguity between multidimensional
access and repeated slicing.

	Set Item

	Array items can be set using the Python []= operator.

	Set Slice

	Multiple array items can be set using a slice assigned with a sequence.
The sequence must have the same length as the slice. If this condition is not
met, an exception
will be raised. If the items to be transferred are a buffer,
then a faster buffer transfer assignment will be used. When buffer transfers
are used individual elements are not checked for range, but instead cast
just like NumPy. Thus, if we have the elements we wish to assign to the
array contained within a NumPy array named na we can transfer all of them using
jarray[:] = na.

	Buffer transfer

	Buffer transfers from a Java array also work for primitive types. Thus we
can simply call the Python memoryview(jarray) function to create a buffer
that can be used to transfer any portion of a Java array out. Memory views
of Java arrays are not writable.

	For each

	Java arrays can be used as the input to a Python for statement. To iterate
each element use for elem in jarray:. They can also be used in
list comprehensions.

	Clone

	Java arrays can be duplicated using the method clone. To create a copy
call jarray.clone(). This operates both on arrays and slice views.

	Length

	Arrays in Java have a defined an immutable length. As such the
Python len(array) function will produce the array length. However,
as that does not match Java expectations, JPype also adds an attribute
for length so that Java idiom jarray.length also works as expected.

In addition, the Java class JChar[] has some addition customizations to help
work better with string types.

Java arrays are currently missing some of the requirements to act as a
collections.abc.Sequence. When working with Java arrays it is also useful
to use the Java array utilities class java.util.Arrays as it has many
methods that provide additional functionality. Java arrays do not support any
additional mathematical operations at this time.

Buffer classes

In addition to array types, JPype also supports Java nio buffer types.
Buffers in Java come in two flavors. Array backed buffers have no special
access. Direct buffers are can converted to Python buffers with both
read and write capabilities.

Each primitive type in Java has its own buffer type named based on the
primitive type. java.nio.ByteBuffer has the greatest control allowing
any type to be read and written to it. Buffers in Java function are like
memory mapped files and have a concept of a read and write pointer which
is used to traverse the array. They also have direct index access to their
specified primitive type.

Java buffer provide an additional Python method:

	Buffer transfer

	Buffer transfers from a Java buffer works for a direct buffer. Array backed
buffers will raise a BufferError. Use the Python memoryview(jarray)
function to create a buffer that can be used to transfer any portion of a Java
buffer out. Memory views of Java buffers are readable and writable.

Buffers do not currently support element-wise access.

Boxed Classes

Often one wants to be able to place a Java primitive into a method of
fields that only takes an object. The process of creating an object from a
primitive is referred to as creating a “boxed” object. The resulting object is
an immutable object which stores just that one primitive.

Java boxed types in JPype are wrapped with classes that inherit from Python
int and float types as both are immutable in Python. This means that
a boxed type regardless of whether produced as a return or created explicitly
are treated as Python types. They will obey all the conversion rules
corresponding to a Python type as implicit matches.

In addition, they produce an exact match with their corresponding Java
type. The type conversion for this is somewhat looser than Java. While Java
provides automatic unboxing of a Integer to a double primitive, JPype can
implicitly convert Integer to a Double boxed.

To box a primitive into a specific type such as to place it into a
java.util.List use JObject on the desired boxed type or call
the constructor for the desired boxed type directly. For example:

lst = java.util.ArrayList()
lst.add(JObject(JInt(1))) # Create a Java integer and box it
lst.add(java.lang.Integer(1)) # Explicitly create the desired boxed object

JPype boxed classes have some additional functionality. As they inherit from
a mathematical type in Python they can be used in mathematical operations.
But unlike Python numerical types they can take an addition state corresponding
to being equal to a null pointer. The Python methods are not aware of this
new state and will treat the boxed type as a zero if the value is a null.

To test for null, cast the boxed type to a Python type explicitly and the
result will be checked. Casting null pointer will raise a TypeError.

b = JObject(None, java.lang.Integer)
a = b+0 # This succeeds and a gets the value of zero
a = int(b)+0 # This fails and raises a TypeError

Boxed objects have the following additional functionality over a normal object.

	Convert to index

	Integer boxed types can be used as Python indices for arrays and other
indexing tasks. This method checks that the value of the boxed
type is not null.

	Convert to int

	Integer and floating point boxed types can be cast into a Python integer
using the int() method. The resulting object is always of type int.
Casting a null pointer will raise a TypeError.

	Convert to float

	Integer and floating point boxed types can be cast into a Python float
using the float() method. The resulting object is always of type
float. Casting a null pointer will raise a TypeError.

	Comparison

	Integer and floating point types implement the Python rich comparison API.
Comparisons for null pointers only succeed for == and != operations.
Non-null boxed types act like ordinary numbers for the purposes of
comparison.

Number Class

The Java class java.lang.Number is a special type in Java. All numerical
Java primitives and Python number types can convert implicitly into a
Java Number.

	Input

	Result

	None

	java.lang.Number(null)

	Python int, float

	java.lang.Number

	Java byte, NumPy int8

	java.lang.Byte

	Java short, NumPy int16

	java.lang.Short

	Java int, NumPy int32

	java.lang.Integer

	Java long, NumPy int64

	java.lang.Long

	Java float, NumPy float32

	java.lang.Float

	Java double, NumPy float64

	java.lang.Double

Additional user defined conversion are also applied. The primitive types
boolean and char and their corresponding boxed types are not considered to
numbers in Java.

Object Class

Although all classes inherit from Object, the object class itself has special
properties that are not inherited. All Java primitives will implicitly convert
to their box type when placed in an Object. In addition, a number of Python
types implicitly convert to a Java object. To convert to a different object
type, explicitly cast the Python object prior to placing in a Java object.

Here a table of the conversions:

	Input

	Result

	None

	java.lang.Object(null)

	Python str

	java.lang.String

	Python bool

	java.lang.Boolean

	Python int

	java.lang.Number

	Python float

	java.lang.Number

In addition it inherits the conversions from java.lang.Number.
Additional user defined conversion are also applied.

String Class

The String class in Java is a special representation often pointing either to
a dynamically created string or to a constant pool item defined in the class.
All Java strings are immutable just like Python strings and thus these are
considered to be equivalent classes.

Because Java strings are in fact just pointers to blob of bytes they are
actually slightly less than a full object in some JVM implementation. This is
a violation of the Object Orients (OO) principle, never take something away by
inheritance. Unfortunately, Java is a frequent violator of that rule, so
this is just one of those exceptions you have to trip over. Therefore, certain
operations such as using a string as a threading control with notify or wait
may lead to unexpected results. If you are thinking about using a Java string
in synchronized statement then remember it is not a real object.

Java strings have a number of additional functions beyond a normal
object.

	Length

	Java strings have a length measured in the number of characters required
to represent the string. Extended Unicode characters
count for double for the purpose of counting characters. The string length
can be determined using the Python len(str) function.

	Indexing

	Java strings can be used as a sequence of characters in Python and thus
each character can be accessed as using the Python indexing operator [].

	Hash

	Java strings use a special hash function which matches the Python hash code.
This ensures that they will always match the same dictionary keys as
the corresponding string in Python. The Python hash can be determined using
the Python hash(str) function. Null pointers are not currently handled.
To get the actually Java hash, use s.hashCode()

	Contains

	Java strings implement the concept of in when using the Java method
contains. The Java implementation is sufficiently similar that it will
work fairly well on strings.
For example, "I" in java.lang.String("team") would be equal to False.

Testing other types using the in operator
will likely raise a TypeError if Java is unable to convert the other item
into something that can be compared with a string.

	Concatenation

	Java strings can be appended to create a new string which contains the
concatenation of the two strings. This is mapped to the Python operator
+.

	Comparison

	Java strings are compared using the Java method compareTo. This
method does not currently handle null and will raise an exception.

	For each

	Java strings are treated as sequences of characters and can be used with a
for-loop construct and with list comprehension. To iterate through all of the
characters, use the Python construct for c in str:.

Unfortunately, Java strings do not yet implement the complete list of
requirements to act as Python sequences for the purposes of
collections.abc.Sequence.

The somewhat outdated JString factory is a Python class that pretends to be a
Java string type. It has the marginal advantage that it can be imported before
the JVM is actually started. Once the JVM is started, its class representation
is pointed to java.lang.String and can be used to construct a new string
object or to test if an object is actually a Java string using isinstance.
It does not implement any of the other string methods and just serves as
convenience class. The more capable java.lang.String can be imported
in place of JString, but only after the JVM is started.

String objects may optionally convert to Python strings when returned
from Java methods, though this option is a performance issue and can lead to
other difficulties. This setting is selected when the JVM is started.
See String Conversions for details.

Java strings will cache the Python conversion so we only pay the conversion
cost once per string.

Exception Classes

Both Python and Java treat exception classes differently from other objects.
Only these types may be caught as part of a try block. Therefore, the
exceptions have a special wrapper. Most of the mechanics of exceptions happen
under the surface. The one difference between Python and Java is the behavior
when the argument is queried. Java arguments can either be the string value, the exception
itself, or the internal construction key depending on how the exception came
into existence. Therefore, the arguments to a Java exception should never be
used as their values are not guaranteed.

Java exception can report their stacktrace to Python in two different ways. If
printed through the Python stack trace routine, Java exceptions are split
between the Python code that raised and a phantom Java cause which contains the
Java exception in Python order. If the debugging information for the Java
source is enabled, Python may even print the Java source code lines
where the error occurred. If you prefer Java style stack traces then print the
result from the stacktrace() method. Unhandled exception that terminate
the program will print the Python style stack trace information.

The base class JException is a special type located in jpype.types that
can be imported prior to the start of the JVM. This serves as the equivalent
of java.lang.Throwable and contains no additional methods. It is currently
being phased out in favor of catching the Java type directly.

Using jpype.JException with a class name as a string was supported in
previous JPype versions but is currently deprecated. For further information
on dealing with exception, see the Exception Handling section. To create a
Java exception use JClass or any of the other importing methods.

Anonymous Classes

Sometimes Java will produce an anonymous class which does to have any actual
class representation. These classes are generated when a method implements
a class directly as part of its body and they serve as a closure with access
to some of the variables that were used to create it.

For the purpose of JPype these classes are treated as their parents. But this
is somewhat problematic when the parent is simply an interface and not an actual
object type.

Lambdas

The companion of anonymous classes are lambda classes. These are generated
dynamically and their parent is always an interface. Lambdas are always
Single Abstract Method (SAM) type interfaces. They can implement additional
methods in the form of default methods but those are generally not accessible
within JPype.

Inner Classes

For the most part, inner classes can be used like normal classes, with the
following differences:

	Inner classes in Java natively use $ to separate the outer class from the
inner class. For example, inner class Foo defined inside class Bar is called
Bar.Foo in Java, but its real native name is Bar$Foo.

	Inner classes appear as member of the containing class. Thus to access them
import the outer class and call them as members.

	Non-static inner classes cannot be instantiated from Python code. Instances
received from Java code can be used without problem.

Importing Java classes

As Java classes are remote from Python and can neither be created nor extended within
Python, they must be imported. JPype provides three different methods for
creating classes.

The highest level API is the use of the import system.
To import a Java class, one must first import the optional module
jpype.imports which has the effect of binding the Java package system
to the Python module lookup. Once this is completed package or class can
be imported using the standard Python import system. The import system
offers a very rich error reporting system. All failed imports produce
an ImportError with diagnostics as to what went wrong. Errors include
unable to find the class, unable to find a required dependency, and incorrect
Java version.

One important caveat when dealing with importing Java modules. Python always
imports local directories as modules before calling the Java importer. So any
directory named java, com, or org will hide corresponding Java
package. We recommend against naming directories as java or top level
domain.

The older method of importing a class is with the JPackage factory.
This factory automatically loads classes as attributes as requested.
If a class cannot be found it will produce an AttributeError. The
symbols java and javax in the jpype module are both JPackage
instances. Only public classes appear on JPackage but protected and even
private classes can be accessed by name. Though most private classes
don’t have any methods or fields that can be accessed.

The last mechanism for looking up a class is through the use of the JClass
factory. This is a low level API allowing the loading of any class available
using the forName mechanism in Java. The JClass method can take up to three
arguments corresponding to arguments of the forName method and can be used
with alternative class loaders. The majority of the JPype test bench uses
JClass so that the tests are only evaluating the desired functionality and not
the import system. But this does not imply that JClass is the preferred
mechanic for importing classes. The first argument can be a string or
a Java class instance. There are two keyword arguments loader and
initialize. The loader can point to an alternative ClassLoader which
is handy when loading custom classes through mechanisms such as over the
web. A False initialize argument loads a class without
loading dependencies nor populating static fields. This option is likely
not useful for ordinary users. It was provided when calling forName was problematic
due to caller sensitive issues.

Type Matching

This section provides tables documenting the JPype conversion rules.
JPype defines different levels of “match” between Python objects and Java
types. These levels are:

	none, There is no way to convert.

	explicit (E), JPype can convert the desired type, but only
explicitly via casting. Explicit conversions are only execute automatically
in the case of a return from a proxy.

	implicit (I), JPype will convert as needed.

	exact (X), Like implicit, but when deciding with method overload
to use, one where all the parameters match “exact” will take precedence
over “implicit” matches.

See the previous section on Java Conversions for details.

There are special conversion rules for java.lang.Object and java.lang.Number.
(Object Class and Number Class)

	Python\Java

	byte

	short

	int

	long

	float

	double

	boolean

	char

	String

	Array

	Object

	java.lang.Object

	java.lang.Class

	int

	I 1

	I 1

	X

	I

	I 3

	I 3

	X 8

	
	
	
	
	I 11

	

	long

	I 1

	I 1

	I 1

	X

	I 3

	I 3

	
	
	
	
	
	I 11

	

	float

	
	
	
	
	I 1

	X

	
	
	
	
	
	I 11

	

	sequence

	
	
	
	
	
	
	
	
	
	
	
	
	

	dictionary

	
	
	
	
	
	
	
	
	
	
	
	
	

	string

	
	
	
	
	
	
	
	I 2

	X

	
	
	I

	

	unicode

	
	
	
	
	
	
	
	I 2

	X

	
	
	I

	

	JByte

	X

	
	
	
	
	
	
	
	
	
	
	I 9

	

	JShort

	
	X

	
	
	
	
	
	
	
	
	
	I 9

	

	JInt

	
	
	X

	
	
	
	
	
	
	
	
	I 9

	

	JLong

	
	
	
	X

	
	
	
	
	
	
	
	I 9

	

	JFloat

	
	
	
	
	X

	
	
	
	
	
	
	I 9

	

	JDouble

	
	
	
	
	
	X

	
	
	
	
	
	I 9

	

	JBoolean

	
	
	
	
	
	
	X

	
	
	
	
	I 9

	

	JChar

	
	
	
	
	
	
	
	X

	
	
	
	I 9

	

	JString

	
	
	
	
	
	
	
	
	X

	
	
	I

	

	JArray

	
	
	
	
	
	
	
	
	
	I/X 4

	
	I

	

	JObject

	
	
	
	
	
	
	
	
	
	I/X 6

	I/X 7

	I/X 7

	

	JClass

	
	
	
	
	
	
	
	
	
	
	
	I

	X

	“Boxed”10

	I

	I

	I

	I

	I

	I

	I

	
	
	
	
	I

	

	1(1,2,3,4,5,6)

	Conversion will occur if the Python value fits in the Java
native type.

	2(1,2)

	Conversion occurs if the Python string or unicode is of
length 1.

	3(1,2,3,4)

	Java defines conversions from integer types to floating point
types as implicit conversion. Java’s conversion rules are based
on the range and can be lossy.
See (http://stackoverflow.com/questions/11908429/java-allows-implicit-conversion-of-int-to-float-why)

	4

	Number of dimensions must match and the types must be
compatible.

	6

	Only if the specified type is a compatible array class.

	7(1,2)

	The object class is an exact match, otherwise
implicit.

	8

	Only the values True and False are implicitly converted to
booleans.

	9(1,2,3,4,5,6,7,8)

	Primitives are boxed as per Java rules.

	10

	Java boxed types are mapped to Python primitives, but will
produce an implicit conversion even if the Python type is an exact
match. This is to allow for resolution between methods
that take both a Java primitve and a Java boxed type.

	11(1,2,3)

	Boxed to java.lang.Number

Exception Handling

Error handling is an important part of any non-trivial program. All Java
exceptions occurring within Java code raise a jpype.JException which
derives from Python Exception. These can be caught either using a specific Java
exception or generically as a jpype.JException or java.lang.Throwable.
You can then use the stacktrace(), str(), and args to access extended
information.

Here is an example:

try :
 # Code that throws a java.lang.RuntimeException
except java.lang.RuntimeException as ex:
 print("Caught the runtime exception : ", str(ex))
 print(ex.stacktrace())

Multiple java exceptions can be caught together or separately:

try:
 # ...
except (java.lang.ClassCastException, java.lang.NullPointerException) as ex:
 print("Caught multiple exceptions : ", str(ex))
 print(ex.stacktrace())
except java.lang.RuntimeException as ex:
 print("Caught runtime exception : ", str(ex))
 print(ex.stacktrace())
except jpype.JException:
 print("Caught base exception : ", str(ex))
 print(ex.stacktrace())
except Exception as ex:
 print("Caught python exception :", str(ex))

Exceptions can be raised in proxies to throw an exception back to Java.

Exceptions within the JPype core are issued with the most appropriate Python
exception type such as TypeError, ValueError, AttributeError, or
OSError.

Exception aliasing

Certain exceptions in Java have a direct correspondence with existing
Python exceptions. Rather than forcing JPype to translate these exceptions,
or forcing the user to handle Java exception types throughout the code,
we have “derived” these exceptions from their Python counter parts. Thus,
rather than requiring special error handling for Java you can simple catch
these exceptions using the standard Python exception types.

	java.lang.IndexOutOfBoundsException

	This exception is synonymous with the Python exception IndexError.
As many slicing or array operations in Java can produce an
IndexOutOfBoundsException but the Python contract for slicing of an array
should raise an IndexError, this type has been customized to consider
IndexError to be a base type.

	java.lang.NullPointerException

	This exception is derived from the Python exception ValueError.
Numerous Java calls produce a NullPointerException and in all cases this
would match a Python ValueError.

By deriving these exceptions from Python, the user is free to catch the
exception either as a Java exception or as the more general Python exception.
Remember that Python exceptions are evaluated in order from most specific to
least.

Controlling the JVM

In this chapter, we will discuss how to control the JVM from within Python.
For the most part, the JVM is invisible to Python. The only user controls
needed are to start up and shutdown the JVM.

Starting the JVM

The first task is always to start the JVM. The settings to the JVM
are immutable over the lifespan of the JVM. The user settings are:
the JVM arguments, the class path used to find jars, and whether to
convert Java strings to Python strings.

Class paths

JPype supports two styles of classpaths. The first is modeled after
Matlab the second argument style uses a list to the startJVM function.

The Matlab style uses the functions jpype.addClassPath and
getClassPath. The first function adds a directory or jar file to the
search path. Wild cards are accepted in the search. Once all of the paths are
added to internal class path, they can be retrieved using getClassPath
which takes a keyword argument env which defaults to true. When set to
false, JPype will ignore the environment variable
CLASSPATH which is normally included in the default classpath.

To use the argument style, pass all of the class paths in a list as
the keyword argument classpath to the startJVM. This classpath
method does not include the environment CLASSPATH, but it does provide
a quick method to pull in a specific set of classes. Wild cards are accepted
as the end of the path to include all jars in a given directory.

One should note that the class path can only be set prior starting the JVM.
Calls to set the class path after the JVM is started are silently ignored.
If a jar must be loaded after the JVM is started, it may be loaded using
java.net.URLClassLoader. Classes loaded using a URLClassloader are
not visible to JPype imports nor to JPackage.

String conversions

The convertStrings argument defines how strings are returned by JPype.
Early in the life of this project return types were often converted to Python
types without regard to preserving the type information. Thus strings would
automatically convert to a Python string effectively the data from Java to
Python on each return. This was a violation of the Python philosophy that
explicit is better than implicit. This also prohibited chaining of Java string
operations as each operation would lose the Java representation and have to be
transferred back and forth. The simple operation of trying to create a Java
string was difficult as directly calling java.lang.String constructor would
once again convert the result back to a Python string, hence the need to use
the JString factory. There was an option to turn off the conversion of
strings, but it was never operable. Therefore, all code written at the
time would expect Java strings to convert to Python strings on return.

Recognizing this is both a performance issue and that it made certain types of
programming prohibitive, JPype switched to having a setting requiring
applications to chose a policy at the start of operation. This option
is a keyword argument convertStrings. The default for 0.7 is to give
the older broken behavior. If specified as False, Java strings will act
as ordinary classes and return a Java string instance. This string instance
can be converted by calling the Python str() function.
Failure to specify a policy will issue a warning message.

You are strongly encouraged to set convertStrings false especially when
are writing reusable Python modules with JPype. String in JPype 0.8,
the default will to not convert strings.

Path to the JVM

In order the start the JVM, JPype requires the path to the Java shared library
typically located in the JRE installation. This can either be specified
manually as the first argument to jpype.startJVM or by automatic search.

The automatic search routine uses different mechanisms depending on the
platform. Typically the first mechanism is the use the environment variable
JAVA_HOME. If no suitable JVM is found there, it will then search common
directories based on the platform. On windows it will consult the registry.

You can get the JVM found during the automatic search by calling
jpype.getDefaultJVMPath().

In order to use the JVM, the architecture of the JVM must match the Python
version. A 64 bit Python can only use a 64 bit JVM. If no suitable JVM can be
found it should raise an error. In some cases so rare, it may lead to a crash
depending on how the platform handles a failed shared library load.

Launching the JVM

Now that we have discussed the JVM options, lets show how to put it into
practice. Suppose that the Python script at the top level of your working
director, with a subdirectory holding all your working jars ./lib, and a
second directory with bare classes ./classes. Java has been properly
installed with the same architecture as Python (both 64 bit in this case).

To start JPype we would execute the following:

import jpype
jpype.startJVM("-ea", classpath=['lib/*', 'classes'], convertStrings=False)

Arguments that begin with a dash are passed to the JVM. Any
unrecognized argument will raise an exception unless the keyword argument
ignoreUnrecognized is set to True. Details of available arguments can
be found in the vendor JVM documentation.

The most frequent problem encountered when starting JPype is the jars failing
to be loaded. Java is unforgiving when loading jar files. To debug
the failures, we will need to print the loaded classpath.

Java has a method to retrieve the classpath that was used during the loading
process.

print(java.lang.System.getProperty('java.class.path'))

This command will print the absolute path to each of the jars that will be used
by the JVM. Each of the jars are written out explicitly as
the JVM does not permit wild-cards. JPype has expanded each of them using
glob. If an expected jar file is missing the list, then it will not be
accessable.

There is a flag to determine the current state of the JVM. Calling
jpype.isJVMStarted() will return the current state of the JVM.

Once the JVM is started, we can find out the version of the JVM. The JVM can
only load jars and classfiles compiled for the JVM version or older. Newer jar
files will invariably fail to load. The JVM version can be determined using
jpype.getJVMVersion().

Shutting down the JVM

At the other end of the process after all work has been performed, we will want
to shutdown the JVM to terminate the program. This will happen automatically
and no user intervention is required. If however, the user wants to continue
execution of Python code after the JVM is finished they can explicitly call
jpype.shutdownJVM(). This can only be called from the main Python thread.
Any other thread will raise an exception.

The shutdown procedure of JPype and Java is fairly complicated.

	JPype requests that the JVM shutdown gracefully.

	Java waits until all non-daemon thread terminate. Thus if you did not
send a termination to each non-daemon threads the shutdown will wait here
until those threads complete their work.

	Once the all threads have completed except for the main thread, the JVM
will begin the shutdown sequence. From this point on the JVM is in a
crippled state limited what can happen to spawning the shutdown threads
and completing them.

	The shutdown will first spawn the threads of cleanup routine that was
attached to the JVM shutdown hook in arbitrary order. These routines
can call back to Python and perform additional tasks.

	Once the last of these threads are completed, JPype then shuts down the
reference queue which dereferences held all Python resources.

	Then JPype shuts down the type manager and frees all internal resources
in the JPype module.

	Last, it unloads the JVM shared library returning the memory used by the JVM.

	Once that is complete, control is returned to Python.

All Java objects are now considered dead and cannot be reactivated. Any attempt
to access their data field will raise an exception.

Attaching a shutdown hook

If you have resources that need to be closed when the JVM is shutdown these
should be attached to the Java Runtime object. The following pattern is used:

@JImplements(Runnable)
class MyShutdownHook:
 @JOverride
 def run(self):
 # perform any required shutdown activities

java.lang.Runtime.getRuntime().addShutdownHook(Thread(MyShutdownHook()))

This thread will be executed in a new thread once the main thread is
the only one remaining alive. Care should always be taken to complete
work in a timely fashion and be aware the shutdown threads are inherently
racing with each other to complete their work. Thus try to avoid expensive
operations on shutdown..

Debugging shutdown

The most common failure during shutdown is the failure of an attached thread
to terminate. There are specific patterns in Java that allow you to query
for all currently attached threads.

Customization

JPype supports three different types of customizations.

The first is to adding a Python base class into a Java tree as was done with
certain exceptions. This type of customization required private calls in JPype
and is not currently exposed to the user.

Second a Python class can be used as a template when a Java class is first
constructed to add additional functionality. This type of customization can
be used to make a Java class appear as a native Python class. Many
of the Java collection classes have been customized to match Python
collections.

Last, Python class can be added to the implicit conversion list. This
customizer is used to make Python types compatable with Java without
requiring the user to manually case over and over.

All customization available to the users is done through class decorators
added to Python classes or functions.

Class Customizers

Java wrappers can be customized to better match the expected behavior in
Python. Customizers are defined using decorators. Applying the annotations
@JImplementationFor and @JOverride to a regular Python class will
transfer methods and properties to a Java class. @JImplementationFor
requires the class name as a string, a Java class wrapper, or Java class
instance. Only a string can be used prior to starting the JVM. @JOverride
when applied to a Python method will hide the Java implementationallowing the
Python method to replace the Java implementation. when a Java method is
overridden, it is renamed with an proceeding underscore to appear as a private
method. Optional arguments to @JOverride can be used to control the
renaming and force the method override to apply to all classes that derive
from a base class (“sticky”).

Generally speaking, a customizer should be defined before the first instance of
a given class is created so that the class wrapper and all instances will have
the customization.

Example taken from JPype java.util.Map customizer:

@_jcustomizer.JImplementationFor('java.util.Map')
class _JMap:
 def __jclass_init__(self):
 Mapping.register(self)

 def __len__(self):
 return self.size()

 def __iter__(self):
 return self.keySet().iterator()

 def __delitem__(self, i):
 return self.remove(i)

The name of the class does not matter for the purposes of customizer though it
should be a private class so that it does not get used accidentally.
The customizer code will steal from the prototype class rather than acting as a
base class, thus, ensuring that the methods will appear on the most derived
Python class and are not hidden by the java implementations. The customizer
will copy methods, callable objects, __new__, class member strings, and
properties.

Type Conversion Customizers

One can add a custom converter method which is called whenever a specified
Python type is passed to a particular Java type. To specify a conversion
method add @JConversion to an ordinary Python function with the name of
Java class to be converted to and one keyword of exact or instanceof.
The keyword controls how strictly the conversion will be applied. exact is
restricted to Python objects whose type exactly matches the specified type.
instanceof accepts anything that matches isinstance to the specified type
or protocol. In some cases, the existing protocol definition will be overly
broad. Adding the keyword argument excludes with a type or tuple of types
can be used to prevent the conversion from being applied. Exclusions always
apply first.

User supplied conversions are tested after all internal conversions have been
exhausted and are always considered to be an implicit conversion.

@_jcustomizer.JConversion("java.util.Collection", instanceof=Sequence,
 excludes=str)
def _JSequenceConvert(jcls, obj):
 return _jclass.JClass('java.util.Arrays').asList(obj)

JPype supplies customizers for certain Python classes.

	Python class

	Implicit Java Class

	pathlib.Path

	java.io.File

	pathlib.Path

	java.nio.file.Path

	datetime.datetime

	java.time.Instant

	collections.abc.Sequence

	java.util.Collection

	collections.abs.Mapping

	java.util.Map

Collections

JPype uses customizers to augment Java collection classes to operate like
Python collections. Enhanced objects include java.util.List,
java.util.Set, java.util.Map, and java.util.Iterator. These
classes generally comply with the Python API except in cases where there is a
significant name conflict and thus no special treatment is required when
handling these Java types. Details of customizing Java classes can be
found in the previous chapter, Customization.

This section will detail the various customization that are to applied the Java
collection classes.

Iterable

All Java classes that implement java.util.Iterable are customized
to support Python iterator notation and thus can be used in Python for loops
and in list comprehensions.

Iterators

All Java classes that implement java.util.Iterator act as Python iterators.

Collection

All Java classes that inherit from java.util.Collection have a defined
length determined by the Python len(obj) function. As they also inherit
from Iterable, they have iterator, forech traversal, and list comprehension.

In addition, methods that take a Java collection can convert a Python
sequence into a collection implicitly if all of the elements have a
conversion into Java. Otherwise a TypeError is raised.

Lists

Java List classes such as ArrayList and LinkedList can be used in Python for
loops and list comprehensions directly. A Java list can be converted to a
Python list or the reverse by calling the requested type as a copy
constructor.

pylist = ['apple', 'orange', 'pears']

Copy the Python list to Java.
jlist = java.util.ArrayList(pylist)

Copy the Java list back to Python.
pylist2 = list(jlist)

Note that the individual list elements are still Java objects when converted
to Python and thus a list comprehension would be required to force Python
types if required. Converting to Java will attempt to convert each argument
individually to Java. If there is no conversion it will produce a
TypeError. The conversion can be forced by casting to the appropriate
Java type with a list comprehension or by defining a new conversion
customizer.

Lists also have iterable, length, item deletion, and indexing. Note that
indexing of java.util.LinkedList is supported but can have a large
performance penalty for large lists. Use of iteration is much for efficient.

Map

A Java classes that implement java.util.Map inherit the Python
collections.abc.Mapping interface. As such they can be iterated, support
the indexing operator for value lookups, item deletion, length, and
support contains.

Here is a summary of their capabilities:

	Action

	Python

	Place a value in the map

	jmap[key]=value

	Delete an entry

	del jmap[key]

	Get the length

	len(jmap)

	Lookup the value

	v=jmap[key]

	Get the entries

	jmap.items()

	Fetch the keys

	jmap.key()

	Check for a key

	key in jmap

In addition, methods that take a Java map can implicitly convert a Python
dict or a class that implements collections.abc.Mapping assuming that
all of the map entries can be converted to Java. Otherwise a TypeError is
raised.

MapEntry

Java map entries unpack into a two value tuple, thus supporting iterating
through key value pairs. Thus is useful when iterating map entries in a
for loop by pairs.

Set

All Java classes that implement java.util.Set implement delitem as well
as the Java collection customizations.

Enumeration

All Java classes that implement java.util.Enumeration inherit Python
iterator behavior and can be used in Python for loops and list comprehensions.

Working with NumPy

As one of the primary focuses of JPype is working with numerical codes such as
NumPy, there are a number of NumPy specific enhancements. NumPy is a large
binary package and therefore JPype cannot be compiled against NumPy directly
without force it to be a requirement. Instead of compiling against NumPy
directly, JPype implements interfaces that NumPy can recognize and use. The
specific enhancements are the following: direct buffer transfers of primitive
arrays and buffers, direct transfer of multi dimensional arrays, buffer backed
NumPy arrays, and conversion of NumPy integer types to Java boxed types.

Transfers to Java

Memory from a NumPy array can be transferred Java in bulk. The transfer of
a one dimensional NumPy array to Java can either be done at initialization
or by use of the Python slice operator.

Assuming we have a single dimensional NumPy array npa, we can transfer
it with initialization using

ja = JArray(JInt)(npa)

Or we can transfer it to Java as a slice assignment.

ja[:] = npa

The slice operator can transfer the entire array or just a portion of it.

Multidimensional transfers to Java

Multidimensional arrays can also be transferred at initialization time.
To transfer a NumPy array to Java use the JArray.of function

z = np.zeros((5,10,20))
ja = JArray.of(z)

Transfers to NumPy

Java arrays can be in two forms. Java multidimensional arrays are not
contiguous in memory. If all of the arrays in each dimension are the same,
then the array is rectangular. If the size of the arrays within any dimension
differ, then the array is jagged. Jagged arrays are an array of arrays rather
than a rectangular block of memory.

NumPy arrays only hold rectangular arrays as multidimensional arrays of
primitives. All other arrangements are a stored as a single dimensional array
of objects. JPype can automatically transfer a rectangular array to NumPy as a
bulk transfer. To do so JPype supports a memoryview on rectangular arrays.
Whenever a memoryview is called on a multidimensional array of primitives,
JPype verifies that it is rectangular and creates a buffer. If it is jagged,
a BufferError is raised. When a Java array is used as an argument to
initialize a NumPy array, it creates a memoryview so that all of the memory
can be transferred in bulk.

Buffer backed NumPy arrays

Java direct buffers provide access between foreign memory and Java.
This access bypasses the JNI layer entirely, permitting Java and Python to
operate on a memory space with native speed. Java direct buffers are not under
the control of the garbage collector and thus can result in memory leaks and
memory exhaustion if not used carefully. This is used with Java libraries that
support direct buffers. Direct buffers are part of the Java nio package
and thus functionality for buffers is in jpype.nio.

To create a buffer backed NumPy array, the user must either create
a direct memory buffer using the Java direct buffer API or create a
Python bytearray and apply jpype.nio.convertToByteBuffer to map this
memory into Java space. NumPy can then convert the direct buffer into
an array using asarray.

To originate a direct buffer from Java, use:

jb = java.nio.ByteBuffer.allocateDirect(80)
db = jb.asDoubleBuffer()
a = np.asarray(db)

To origate a direct buffer from Python, use:

bb = bytearray(80)
jb = jpype.nio.convertToDirectBuffer(bb)
db = jb.asDoubleBuffer()
a = np.asarray(db)

Buffer backed arrays have one downside. Python and by extension NumPy have
no way to tell when a buffer becomes invalid. Once the JVM is shutdown,
all buffers become invalid and any access to NumPy arrays backed by Java
risk crashing. To avoid this fate, either create the memory for the buffer from
within Python and pass it to Java. Or use the Java java.lang.Runtime.exit
which will terminate both the Java and Python process without leaving any
opertunity to access a dangling buffer.

Buffer backed memory is not limited to use with NumPy. Buffer transfers are
supported to provide shared memory between processes or memory mapped files.
Anything that can be mapped to an address with as a flat array of primitives
with machine native byte ordering can be mapped into Java.

NumPy Primitives

When converting a Python type to a boxed Java type, there is the difficulty
that Java has no way to known the size of a Python numerical value. But when
converting NumPy numerical types, this is not an issue. The following
conversions apply to NumPy primitive types.

	Numpy Type

	Java Boxed Type

	np.int8

	java.lang.Byte

	np.int16

	java.lang.Short

	np.int32

	java.lang.Integer

	np.int64

	java.lang.Long

	np.float32

	java.lang.Float

	np.float64

	java.lang.Double

Further, these NumPy types obey Java type conversion rules so that they
act as the equivalent of the Java primitive type.

Implementing Java interfaces

Proxies in Java are foreign elements that pretend to implement a Java
interface. We use this proxy API to allow Python to implement any Java
interface. Of course, a proxy is not the same as subclassing Java classes in
Python. However, most Java APIs are built so that sub-classing is not required.
Good examples of this are AWT and SWING. Except for relatively advanced
features, it is possible to build complete UIs without creating a single
subclass.

For those cases where sub-classing is absolutely necessary (i.e. using Java’s
SAXP classes), it is necessaryy to create an interface and a simple
subclass in Java that delegates the calls to that interface. The interface
can then be implemented in Python using a proxy.

There are two APIs for supporting of Java proxies. The new high-level
interface uses decorators which features strong error checking and easy
notation. The older low-level interface allows any Python object or dictionary
to act as a proxy even if it does not provide the required methods for the
interface.

Implements

The newer style of proxy works by decorating any ordinary Python class to
designate it as a proxy. This is most effective when you
control the Python class definition. If you don’t control the class definition
you either need to encapsulate the Python object in another object or
use the older style.

Implementing a proxy is simple. First construct an ordinary Python class with
method names that match the Java interface to be implemented. Then add
the @JImplements decorator to the class definition. The first argument
to the decorator is the interface to implement. Then mark each
method corresponding to a Java method in the interface with @JOverride.
When the proxy class is declared, the methods will be checked against the Java
interface. Any missing method will result in JPype raising an exception.

High-level proxies have one other important behavior. When a proxy created
using the high-level API returns from Java it unpacks back to the original
Python object complete with all of its attributes. This occurs whether the
proxy is the self argument for a method or
proxy is returned from a Java container such as a list. This is accomplished
because the actually proxy is a temporary Java object with no substance,
thus rather than returning a useless object, JPype unpacks the proxy
to its original Python object.

Proxy Method Overloading

Overloaded methods will issue to a single method with the matching name. If
they take different numbers of arguments then it is best to implement a method
dispatch:

@JImplements(JavaInterface)
class MyImpl:
 @JOverride
 def callOverloaded(self, *args):
 # always use the wild card args when implementing a dispatch
 if len(args)==2:
 return self.callMethod1(*args)
 if len(args)==1 and isinstance(args[0], JString):
 return self.callMethod2(*args)
 raise RuntimeError("Incorrect arguments")

 def callMethod1(self, a1, a2):
 # ...
 def callMethod2(self, jstr):
 # ...

Multiple interfaces

Proxies can implement multiple interfaces as long as none of those interfaces
have conflicting methods. To implement more than one interface, use a
list as the argument to the JImplements decorator. Each interface must be
implemented completely.

Deferred realization

Sometimes it is useful to implement proxies before the JVM is started. To
achieve this, specify the interface using a string and add the keyword argument
deferred with a value of True to the decorator.

@JImplements("org.foo.JavaInterface", deferred=True)
class MyImpl:
 # ...

Deferred proxies are not checked at declaration time, but instead at the time
for the first usage. Because of this, when uses an deferred proxy the code
must be able to handle initialization errors wherever the proxy is created.

Other than the raising of exceptions on creation, there is no penalty to
deferring a proxy class. The implementation is checked once on the first
usage and cached for the remaining life of the class.

Proxy Factory

When a foreign object from another module for which you do not control the class
implementation needs to be passed into Java, the low level API is appropriate.
In this API you manually create a JProxy object. The proxy object must either
be a Python object instance or a Python dictionary. Low-level proxies use the
JProxy API.

JProxy

The JProxy allows Python code to “implement” any number of Java interfaces,
so as to receive callbacks through them. The JProxy factory has the signature:

JProxy(intr, [dict=obj | inst=obj] [, deferred=False])

The first argument is the interface to be implemented. This may be either
a string with the name of the interface, a Java class, or a Java class instance.
If multiple interfaces are to be implemented the first argument is
replaced by a Python sequence. The next argument is a keyword argument
specifying the object to receive methods. This can either be a dictionary
dict which names the methods as keys or an object instance inst which
will receive method calls. If more than one option is selected, a TypeError
is raised. When Java calls the proxy the method is looked up in either
the dictionary or the instance and the resulting method is called. Any
exceptions generated in the proxy will be wrapped as a RuntimeException
in Java. If that exception reaches back to Python it is unpacked to return
the original Python exception.

Assume a Java interface like:

public interface ITestInterface2
{
 int testMethod();
 String testMethod2();
}

You can create a proxy implementing this interface in two ways.
First, with an object:

class C :
 def testMethod(self) :
 return 42

 def testMethod2(self) :
 return "Bar"

c = C() # create an instance
proxy = JProxy("ITestInterface2", inst=c) # Convert it into a proxy

or you can use a dictionary.

def _testMethod() :
 return 32

def _testMethod2() :
 return "Fooo!"

d = { 'testMethod' : _testMethod, 'testMethod2' : _testMethod2, }
proxy = JProxy("ITestInterface2", dict=d)

Proxying Python objects

Sometimes it is necessary to push a Python object into Java memory space as an
opaque object. This can be achieved using be implementing a proxy for
an interface which has no methods. For example, java.io.Serializable has
no arguments and little functionality beyond declaring that an object can be
serialized. As low-level proxies to not automatically convert back to Python
upon returning to Java, the special keyword argument convert should be set
to True.

For example, let’s place a generic Python object such as NumPy array into Java.

import numpy as np
u = np.array([[1,2],[3,4]])
ls = java.util.ArrayList()
ls.add(jpype.JProxy(java.io.Serializable, inst=u, convert=True))
u2 = ls.get(0)
print(u is u2) # True!

We get the expected result of True. The Python has passed through Java
unharmed. In future versions of JPype, this method will be extended to provide
access to Python methods from within Java by implementing a Java interface that
points to back to Python objects.

Reference Loops

It is strongly recommended that object used in proxies must never hold a
reference to a Java container. If a Java container is asked to hold a Python
object and the Python object holds a reference to the container, then a
reference loop is formed. Both the Python and Java garbage collectors are
aware of reference loops within themselves and have appropriate handling for
them. But the memory space of the other machine is opaque and neither Java nor
Python is aware of the reference loop. Therefore, unless you manually break
the loop by either clearing the container, or removing the Java reference from
Python these objects can never be collected. Once you lose the handle they
will both become immortal.

Ordinarily the proxy by itself would form a reference loop. The Python
object points to a Java invocation handler and the invocation handler points
back to Python object to prevent the Python object from going away as long
as Java is holding onto the proxy. This is resolved internally by making
the Python weak reference the Java portion. If Java ever garbage collects
the Java half, it is recreated again when the proxy is next used.

This does have some consequences for the use of proxies. Proxies must never
be used as synchronization objects. Whenever
they are garbage collected, they loss their identity. In addition, their
hashCode and system id both are reissued whenever they are refreshed.
Therefore, using a proxy as a Java map key can be problematic. So long as
it remains in the Java map, it will maintain the same identify. But once
it is removed, it is free to switch identities every time it is garbage
collected.

Concurrent Processing

This chapter covers the topic of threading, synchronization, and multiprocess.
Much of this material depends on the use of Proxies covered in the prior
chapter.

Threading

JPype supports all types of threading subject to the restrictions placed by
Python. Java is inherently threaded and support a vast number of threading
styles such as execution pools, futures, and ordinary thread. Python is
somewhat more limited. At its heart Python is inherently single threaded
and requires a master lock known as the GIL (Global Interpreter Lock) to
be held every time a Python call is made. Python threads are thus more
cooperative that Java threads.

To deal with this behavior, JPype releases the GIL every time it leaves from
Python into Java to any user defined method. Shorter defined calls such as
to get a string name from from a class may not release the GIL. Every time
the GIL is released it is another opportunity for Python to switch to a different
cooperative thread.

Python Threads

For the most part, Python threads based on OS level threads (i.e. POSIX
threads) will work without problem. The only challenge is how Java sees threads.
In order to operate on a Java method, the calling thread must be attached to
Java. Failure to attach a thread will result in a segmentation fault. It used
to be a requirement that users manually attach their thread to call a Java
function, but as the user has no control over the spawning of threads by other
applications such as an IDE, this inevitably lead to unexpected segmentation
faults. Rather that crashing randomly, JPype automatically attachs any
thread that invokes a Java method. These threads are attached automatically as
daemon threads so that will not prevent the JVM from shutting down properly
upon request. If a thread must be attached as a non-daemon, use the method
jpype.attachThreadToJVM() from within the thread context. Once this is
done the JVM will not shut down until that thread is completed.

There is a function called jpype.isThreadAttachedToJVM() which will check
if a thread is attached. As threads automatically attach to Java, the only
way that a thread would not be attached is if it has never called a Java method.

The downside of automatic attachment is that each attachment allocates a
small amount of resources in the JVM. For applications that spawn frequent
dynamically allocated threads, these threads will need to be detached prior
to completing the thread with jpype.detachThreadFromJVM(). When
implementing dynamic threading, one can detach the thread
whenever Java is no longer needed. The thread will automatically reattach if
Java is needed again. There is a performance penalty each time a thread is
attached and detached.

Java Threads

To use Java threads, create a Java proxy implementins
java.lang.Runnable. The Runnable can then be passed any Java threading
mechanism to be executed. Each time that Java threads transfer control
back to Python, the GIL is reacquired.

Other Threads

Some Python libraries offer other kinds of thread, (i.e. microthreads). How
they interact with Java depends on their nature. As stated earlier, any OS-
level threads will work without problem. Emulated threads, like microthreads,
will appear as a single thread to Java, so special care will have to be taken
for synchronization.

Synchronization

Java synchronization support can be split into two categories. The first is the
synchronized keyword, both as prefix on a method and as a block inside a
method. The second are the three methods available on the Object class
(notify, notifyAll, wait).

To support the synchronized functionality, JPype defines a method called
synchronized(obj) to be used with the Python with statement, where
obj has to be a Java object. The return value is a monitor object that will
keep the synchronization on as long as the object is kept alive. For example,

from jpype import synchronized

mySharedList = java.util.ArrayList()

Give the list to another thread that will be adding items
otherThread,setList(mySharedList)

Lock the list so that we can access it without interference
with synchronized(mySharedList):
 if not mySharedList.isEmpty():
 ... # process elements
Resource is unlocked once we leave the block

The Python with statement is used to control the scope. Do not
hold onto the monitor without a with statement. Monitors held outside of a
with statement will not be released until they are broken when the monitor
is garbage collected.

The other synchronization methods are available as-is on any Java object.
However, as general rule one should not use synchronization methods on Java
String as internal string representations may not be complete objects.

For synchronization that does not have to be shared with Java code, use
Python’s support directly rather than Java’s synchronization to avoid
unnecessary overhead.

Threading examples

Java provides a very rich set of threading tools. This can be used in Python
code to extend many of the benefits of Java into Python. However, as Python
has a global lock, the performance of Java threads while using Python is not
as good as native Java code.

Limiting execution time

We can combine proxies and threads to produce achieve a number of interesting
results. For example:

def limit(method, timeout):
""" Convert a Java method to asynchronous call with a specified timeout. """
 def f(*args):
 @jpype.JImplements(java.util.concurrent.Callable)
 class g:
 @jpype.JOverride
 def call(self):
 return method(*args)
 future = java.util.concurrent.FutureTask(g())
 java.lang.Thread(future).start()
 try:
 timeunit = java.util.concurrent.TimeUnit.MILLISECONDS
 return future.get(int(timeout*1000), timeunit)
 except java.util.concurrent.TimeoutException as ex:
 future.cancel(True)
 raise RuntimeError("canceled", ex)
 return f

 print(limit(java.lang.Thread.sleep, timeout=1)(200))
 print(limit(java.lang.Thread.sleep, timeout=1)(20000))

Here we have limited the execution time of a Java call.

Multiprocessing

Because only one JVM can be started per process, JPype cannot be used with
processes created with fork. Forks copy all memory including the JVM. The
copied JVM usually will not function properly thus JPype cannot support
multiprocessing using fork.

To use multiprocessing with JPype, processes must be created with “spawn”. As
the multiprocessing context is usually selected at the start and the default
for Unix is fork, this requires the creating the appropriate spawn context. To
launch multiprocessing properly the following recipe can be used.

import multiprocessing as mp

ctx = mp.get_context("spawn")
process = ctx.Process(...)
queue = ctx.Queue()
...

When using multiprocessing, Java objects cannot be sent through the default
Python Queue methods as calls pickle without any Java support. This can be
overcome by wrapping Python Queue to first encode to a byte stream using
the JPickle package. By wrapping a Queue with the Java pickler any
serializable Java object can be transferred between processes.

In addition, a standard Queue will not produce an error if is unable to pickle
a Java object. This can cause deadlocks when using multiprocessing IPC, thus
wrapping any Queue is required.

Miscellaneous topics

This chapter contains all the stuff that did not fit nicely into the narrative
about JPype. Topics include code completion, performance, debugging Java
within JPype, debugging JNI and other JPype failures, how caller sensitive
methods are dealt with, and finally limitations of JPype.

Autopep8

When Autopep8 is applied a Python script, it reorganizes the imports to conform
to E402 [https://www.flake8rules.com/rules/E402.html]. This has the unfortunate side effect of moving the Java imports above
the startJVM statement. This can be avoided by either passing in --ignore
E402 or setting the ignore in .pep8.

Example:

import jpype
import jpype.imports

jpype.startJVM()

from gov.llnl.math import DoubleArray

Result without --ignore E402

from gov.llnl.math import DoubleArray # Fails, no JVM running
import jpype
import jpype.imports

jpype.startJVM()

Performance

JPype uses JNI, which is well known in the Java world as not being the most
efficient of interfaces. Further, JPype bridges two very different runtime
environments, performing conversion back and forth as needed. Both of these
can impose performance bottlenecks.

JNI is the standard native interface for most, if not all, JVMs, so there is
no getting around it. Down the road, it is possible that interfacing with CNI
(GCC’s java native interface) may be used. Right now, the best way to reduce
the JNI cost is to move time critical code over to Java.

Follow the regular Python philosophy : Write it all in Python, then write
only those parts that need it in C. Except this time, it’s write the parts
that need it in Java.

Everytime an object is passed back and forth, it will incure a conversion
cost.. In cases where a given object (be it a string, an object, an array, etc …) is passed often
into Java, the object should be converted once and cached.
For most situations, this will address speed issues.

To improve speed issues, JPype has converted all of the base classes into
CPython. This is a very significant speed up over the previous versions of
the module. In addition, JPype provides a number of fast buffer transfer
methods. These routines are triggered automatically working with any buffer
aware class such as those in NumPy.

As a final note, while a JPype program will likely be slower than its pure
Java counterpart, it has a good chance of being faster than the pure Python
version of it. The JVM is a memory hog, but does a good job of optimizing
code execution speeds.

Code completion

Python supports a number of different code completion engines that are
integrated in different Python IDEs. JPype has been tested with both the
IPython greedy completion engine and Jedi. Greedy has the disadvantage
that is will execute code resulting potentially resulting in an undesirable
result in Java.

JPype is Jedi aware and attempts to provide whatever type information that
is available to Jedi to help with completion tasks. Overloaded methods are
opaque to Jedi as the return type cannot be determined externally. If all of
the overloads have the same return type, the JPype will add the return type
annotation permitting Jedi to autocomplete through a method return.

For example:

JString("hello").substring.__annotations__
Returns {'return': <java class 'java.lang.String'>}

Jedi can manually be tested using the following code.

js = JString("hello")
src = 'js.s'
script = jedi.Interpreter(src, [locals()])
compl = [i.name for i in script.completions()]

This will produce a list containing all method and field that begin with
the letter “s”.

JPype has not been tested with other autocompletion engines such as Kite.

Garbage collection

Garbage collection (GC) is supposed to make life easier for the programmer by
removing the need to manually handle memory. For the most part it is a good
thing. However, just like running a kitchen with two chiefs is a bad idea,
running with two garbage collections is also bad. In JPype we have to contend
with the fact that both Java and Python provide garbage collection for their
memory and neither provided hooks for interacting with an external garbage
collector.

For example, Python is creating a bunch a handles to Java memory for a
period of time but they are in a structure with a reference loop internal to
Python. The structures and handles are small so Python doesn’t see an issue,
but each of those handles is holding 1M of memory in Java space. As the heap
fills up Java begins garbage collecting, but the resources can’t be freed
because Python hasn’t cleanup up these structures. The reverse occurs if a
proxy has any large NumPy arrays. Java doesn’t see a problem as it has plenty
of space to work in but Python is running its GC like mad trying to free up
space to work.

To deal with this issue, JPype links the two garbage collectors. Python is
more aggressive in calling GC than Java and Java is much more costly than
Python in terms of clean up costs. So JPype manages the balance. JPype
installs a sentinel object in Java. Whenever that sentinel is collected Java
is running out of space and Python is asked to clean up its space as well. The
reverse case is more complicated as Python can’t just call Java’s expensive
routine any time it wants. Instead JPype maintains a low-water and high-water
mark on Python owned memory. Each time it nears a high-water mark during a
Python collection, Java GC gets called. If the water level shrinks than
Java was holding up Python memory and the low-water mark is reset.
Depending on the amount of memory being exchanged the Java GC may trigger
as few as once every 50 Python GC cycles or as often as every other.
The sizing on this is dynamic so it should scale to the memory use of
a process.

Using JPype for debugging Java code

One common use of JPype is to function as a Read-Eval-Print Loop for Java. When
operating Java though Python as a method of developing or debugging Java there
are a few tricks that can be used to simplify the job. Beyond being able to
probe and plot the Java data structures interactively, these methods include:

	Attaching a debugger to the Java JVM being run under JPype.

	Attaching debugging information to a Java exception.

	Serializing the state of a Java process to be evaluated at a later point.

We will briefly discuss each of these methods.

Attaching a Debugger

Interacting with Java through a shell is great, but sometimes it is necessary
to drop down to a debugger. To make this happen we need to start the JVM
with options to support remote debugging.

We start the JVM with an agent which will provide a remote debugging port which
can be used to attach your favorite Java debugging tool. As the agent is
altering the Java code to create additional debugging hooks, this process can
introduce additional errors or alter the flow of the code. Usually this is
used by starting the JVM with the agent, placing a pause marker in the Python
code so that developer can attach the Java debugger, executing the Python code
until it hits the pause, attaching the debugger, setting break point in Java,
and then asking Python to proceed.

So lets flesh out the details of how to accomplish this…

jpype.startJVM("-Xint", "-Xdebug", "-Xnoagent",
 "-Xrunjdwp:transport=dt_socket,server=y,address=12999,suspend=n")

Next, add a marker in the form of a pause statement at the location where
the debugger should be attached.

input("pause to attach debugger")
myobj.callProblematicMethod()

When Python reaches that point during execution, switch to a Java IDE such as
NetBeans and select Debug : Attach Debugger. This brings up a window (see
example below). After attaching (and setting desired break points) go back to
Python and hit enter to continue. NetBeans should come to the foreground when
a breakpoint is hit.

[image: _images/attach_debugger.png]

Attach data to an Exception

Sometimes getting to the level of a debugger is challenging especially if the
code is large and error occurs rarely. In this case, it is often beneficial to
attach data to an exception. To achieve this, we need to write a small utility
class. Java exceptions are not strictly speaking expandable, but they can be
chained. Thus, it we create a dummy exception holding a java.util.Map and
attach it to as the cause of the exception, it will be passed back down the
call stack until it reaches Python. We can then use getCause() to retrieve
the map containing the relevant data.

Capturing the state

If the program is not running in an interactive shell or the program run time
is long, we may not want to deal with the problem during execution. In this
case, we can serialize the state of the relevant classes and variables. To use
this option, we mus make sure all of the classes in Java that we are using
are Serializable. Then add a condition that detects the faulty algorithm state.
When the fault occurs, create a java.util.HashMap and populate it with
the values to be examined from within Python. Use serialization to write
the entire structure to a file. Execute the program and collect all of the
state files.

Once the state files have been collected, start Python with an interactive
shell and launch JPype with a classpath for the jars. Finally,
deserialize the state files to access the Java structures that have
been recorded.

Getting additional diagnostics

For the most part JPype does what its told, but that does not mean that
there are no bugs. With some many different interactions between Python and Java
there is always some untested edge-cases.

JPype has a few diagnostic tools to help deal with these sorts of problems
but each of them require accessing a “private” JPype symbol which may be
altered, removed, folded, spindled, or mutilated in any future release.
Thus none of the following should be used in production code.

Checking the type of a cast

Sometimes it is difficult to understand why a particular method overload is being
selected by the method dispatch. To check the match type for a conversion
call the private method Class._canConvertToJava. This will produce a string
naming the type of conversion that will be performed as one of none,
explicit, implicit, or exact..

To test the result of the conversion process, call Class._convertToJava.
Unlike an explicit cast, this just attempts to perform the conversion without
bypassing all of the other logic involved in casting. It replicates
the exact process used when a method is called or a field is set.

C++ Exceptions in JPype

Internally JPype can generate C++ exception which is converted into Python
exceptions for the user. To trace an error back to its C++ source, it
is necessary to obtain the original C++ exception. As
all sensitive block have function names compiled in to the try catch blocks,
these C++ exception stack frames can be extracted as the “cause” of a Python
exception. To enable C++ stack traces use the command
_jpype.enableStacktraces(True). Once executed all C++ exceptions that
fell through a C++ exception handling block will produce an augmented C++
stack trace. If the JPype source code is available to Python, it can even
print out each line where the stack frame was caught. This is usually at the
end of each function that was executed. JPype does not need to be recompiled
to use this option.

Tracing

To debug a problem that resulted from a stateful interaction of elements the use
of the JPype tracing mode may helpful. To enable tracing
recompile JPype with the --enable-tracing mode set. When code is executed
with tracing, every JNI call along with the object addresses and exceptions will
be printed to the console. This is keyed to macros that appear at the start and end of each
JPype function. These macros correspond to a try catch block.

This will often produce very large and verbose tracing logs. However, tracing
is often the only way to observe a failure that originated in one JNI call but did
not fail until many calls later.

Instrumentation

In order to support coverage tools, JPype can be compiled with a special
instrumentation mode in which the private module command _jpype.fault
can be used to trigger an error. The argument to the fault must be a function
name as given in the JP_TRACE_IN macro at the start of each JPype function
or a special trigger point defined in the code. When the fault point is
encounter it will trigger a SystemError.
This mode of operation can be used to replicate the path
that a particular call took and verify that the error handling from that point
back to Java is safe.

Because instrumentation uses the same control hooks as tracing, only one mode
can be active at a time. Enabling instrumentation requires recompiling the
JPype module with --enable-coverage option.

Using a debugger

If there is a crash in the JPype module, it may be necessary to get a backtrace
using a debugger. Unfortunately Java makes this task a bit complicated. As
part of its memory handling routine, Java takes over the segmentation fault
handler. Whenever the fault is triggered, Java checks to see if it was the
result the growth of an internal structure. If it was simply a need for
additional space, Java handles the exception by allocating addition memory. On
the other hand, if a fault was triggered by some external source, Java
constructs a JVM fault report and then transfers control back to the usual
segmentation fault handler. Java will often corrupt the stack frame. Any
debugger attempting to unpack the corrupted core file will instead get random
function addresses.

The alternative is for the user to start JPype with an interactive debugger and
execute to the fault point. But this option also presents challenges. The
first action after starting the JVM is a test to see if its segmentation fault
handler was installed properly. Thus it will trigger an intentional
segmentation fault. The debugger can not recognize the difference between an
intentional test and an actual fault, so the test will stop the debugger. To
avoid this problem debuggers such as gdb must be set to ignore the first
segmentation fault. Further details on this can be found in the developer
guide.

Caller sensitive methods

The Java security model tracks what caller requested the method as a means to
determine the level of access to provide. Internal callers are provided
privileged access to perform unsafe operations and external callers are given
safer and more restricted access. To perform this task, the JVM seaches the
call stack to obtain the calling methods module.

This presents a difficulty for method invoked from JNI. A method called from
JNI lacks any call stack to unravel. Rather than relegating the call
to a safer level of access, the security model would outright deny access to
certain JPype calls. This resulted in a number of strange
behaviors over the years that were forced to be worked around. This issue was
finally solved with the release of Java 12 when they outright broken all calls
to getMethod by throwing a NullPointer exception
whenever the caller frame was not found. This inadvertent clued us into
why Java would act so strangely for certain calls such as constructing a
SQL database or attempting to call Class.forName. By creating an actual
test case to work around we were able to resolve this limitation.

Once we identified the issue, the workaround is only call caller sensitive
methods from within Java. But given that we call methods through JNI and the
JNI interface defines no way to specify an origin for the call, the means we
needed to develop an alternative calling mechanism. Instead of calling methods
directly, we instead pass the method id and the list of desired arguments to
the internal org.jpype Java package. This package unpacks the request and
executes the desired method from within Java. The call stack will indicate the
caller is an external jar and be given the safe and restricted level of access.
The result is then passed back to through the JNI layer.

This special calling mechanism is slower and more indirect than the normal
calling procedure, so its use is limited to only those methods that really
require a caller sensitive procedure. The mechanism to determine which methods
are caller sensitive depends on the internals of Java and have changed with
Java versions. Older Java versions did not directly mark the caller sensitive
methods and we must instead blanket bomb all methods belonging to
java.lang.Class, java.lang.ClassLoader, and java.sql.DriverManager.
Newer versions specifically annotate the methods requiring caller sensitive
treatment, but for some reason this annotation is a package private and thus
we must search through method annotations by name to find the
caller sensitive annotation. Fortunately, this process is only performed once
when the class is created, and very few methods have a large number of
annotations so this isn’t a performance hit.

JPype Known limitations

This section lists those limitations that are unlikely to change, as they come
from external sources.

Restarting the JVM

JPype caches many resources to the JVM. Those resource are still allocated
after the JVM is shutdown as there are still Python objects that point to those
resources. If the JVM is restarted, those stale Python objects will be in a
broken state and the new JVM instance will obtain the references to these
resulting in a memory leak. Thus it is not possible to start the JVM after it
has been shut down with the current implementation.

Running multiple JVM

JPype uses the Python global import module dictionary, a global Python to Java
class map, and global JNI TypeManager map. These resources are all tied to the
JVM that is started or attached. Thus operating more than one JVM does not
appear to be possible under the current implementation. Further, as of Java
1.2 there is no support for creating more than one JVM in the same process.

Difficulties that would need to be overcome to remove this limitation include:

	Finding a JVM that supports multiple JVMs running in the same process.
This can be achieved on some architectures by loading the same shared
library multiple times with different names.

	Alternatively as all available JVM implementations support on one JVM
instance per process, a communication layer would have to proxy JNI
class from JPype to another process. But this has the distinct problem that
remote JVMs cannot register native methods nor share memory without
considerable effort.

	Which JVM would a static class method call. The class types
would need to be JVM specific (ie. JClass('org.MyObject', jvm=JVM1))

	How would a wrapper from two different JVM coexist in the
jpype._jclass module with the same name if different class
is required for each JVM.

	How would the user specify which JVM a class resource is created in
when importing a module.

	How would objects in one JVM be passed to another.

	How can boxed and String types hold which JVM they will box to on type
conversion.

Thus it appears prohibitive to support multiple JVMs in the JPype
class model.

Errors reported by Python fault handler

The JVM takes over the standard fault handlers resulting in unusual behavior if
Python handlers are installed. As part of normal operations the JVM will
trigger a segmentation fault when starting and when interrupting threads.
Pythons fault handler can intercept these operations and interpret these as
real faults. The Python fault handler with then reporting extraneous fault
messages or prevent normal JVM operations. When operating with JPype, Python
fault handler module should be disabled.

This is particularly a problem for running under pytest as the first action it
performs is to take over the error handlers. This can be disabled by adding
this block as a fixture at the start of the test suite.

try:
 import faulthandler
 faulthandler.enable()
 faulthandler.disable()
except:
 pass

This code enables fault handling and then returns the default handlers which
will point back to those set by Java.

Unsupported Python versions

Python 3.4 and earlier

The oldest version of Python that we currently support is Python 3.5. Before
Python 3.5 there were a number of structural difficulties in the object model
and the buffering API. In principle, those features could be excised from
JPype to extend support to older Python 3 series version, but that is unlikely
to happen without a significant effort.

Python 2

CPython 2 support was removed starting in 2020. Please do not report to us
that Python 2 is not supported. Python 2 was a major drag on this project for
years. Its object model is grossly outdated and thus providing for it greatly
impeded progress. When the life support was finally pulled on that beast,
I like many others breathed a great sigh of relief and gladly cut out the
Python 2 code. Since that time JPype operating speed has improved anywhere
from 300% to 10000% as we can now implement everything back in CPython rather
than band-aiding it with interpreted Python code.

PyPy

The GC routine in PyPy 3 does not play well with Java. It runs when it thinks
that Python is running out of resources. Thus a code that allocates a lot
of Java memory and deletes the Python objects will still be holding the
Java memory until Python is garbage collected. This means that out of
memory failures can be issued during heavy operation. We have addressed linking
the garbage collectors between CPython and Java, but PyPy would require a
modified strategy.

Further, when we moved to a completely Python 3 object model we unfortunately
broke some of the features that are different between CPython and PyPy. The
errors make absolutely no sense to me. So unless a PyPy developer generously
volunteering time for this project, this one is unlikely to happen.

Jython Python

If for some reason you wandered here to figure out how to use Java from
Jython using JPype, you are clearly in the wrong place. On the other hand,
if you happen to be a Jython developer who is looking for inspiration on how
to support a more JPype like API that perhaps we can assist you. Jython aware
Python modules often mistake JPype for Jython at least up until the point
that differences in the API triggers an error.

Unsupported Java virtual machines

The open JVM implementations Cacao and JamVM are known not to work with
JPype.

Unsupported Platforms

Some platforms are problematic for JPype due to interactions between the
Python libraries and the JVM implementation.

Cygwin

Cygwin was usable with previous versions of JPype, but there were numerous
issues for which there is was not good solution solution.

Cygwin does not appear to pass environment variables to the JVM properly
resulting in unusual behavior with certain windows calls. The path
separator for Cygwin does not match that of the Java DLL, thus specification
of class paths must account for this. Threading between the Cygwin libraries
and the JVM was often unstable.

Java QuickStart Guide

This is a quick start guide to using JPype with Java. This guide will show a
series of snippets with the corresponding commands in both Java and Python for
using JPype. The JPype User Guide and API Reference have additional details on
the use of the JPype module.

JPype uses two factory classes (JArray and JClass) to produce class
wrappers which can be used to create all Java objects. These serve as both the
base class for the corresponding hierarchy and as the factory to produce new
wrappers. Casting operators are used to construct specify types of Java types
(JObject, JString, JBoolean, JByte, JChar, JShort,
JInt, JLong, JFloat, JDouble). Two special classes serve as the
base classes for exceptions (JException) and interfaces (JInterface).
There are a small number of support methods to help in controlling the JVM.
Lastly, there are a few annotations used to create customized wrappers.

For the purpose of this guide, we will assume that the following classes were
defined in Java. We will also assume the reader knows enough Java and Python
to be dangerous.

package org.pkg;

publc class BassClass
{
 public callMember(int i)
 {}
}

public class MyClass extends BaseClass
{
 final public static int CONST_FIELD = 1;
 public static int staticField = 1;
 public int memberField = 2;
 int internalField =3;

 public MyClass() {}
 public MyClass(int i) {}

 public static void callStatic(int i) {}
 public void callMember(int i) {}

 // Python name conflict
 public void pass() {}

 public void throwsException throws java.lang.Exception {}

 // Overloaded methods
 public call(int i) {}
 public call(double d) {}
}

Starting JPype

The hardest thing about using JPype is getting the jars loaded into the JVM.
Java is curiously unfriendly about reporting problems when it is unable to find
a jar. Instead, it will be reported as an ImportError in Python.
These patterns will help debug problems with jar loading.

Once the JVM is started Java packages that are within a top level domain (TLD)
are exposed as Python modules allowing Java to be treated as part of Python.

	Description

	Java

	Python

	Start Java Virtual
Machine (JVM)

	
	# Import module
import jpype

Enable Java imports
import jpype.imports

Pull in types
from jpype.types import *

Launch the JVM
jpype.startJVM()

	Start Java Virtual
Machine (JVM) with a

classpath

	
	# Launch the JVM
jpype.startJVM(classpath = ['jars/*'])

	Import default Java
namespace 1

	
	import java.lang

	Add a set of jars from a
directory 2

	
	jpype.addClassPath("/my/path/*")

	Add a specific jar to the
classpath 2

	
	jpype.addClassPath('/my/path/myJar.jar')

	Print JVM CLASSPATH 3

	
	from java.lang import System
print(System.getProperty("java.class.path"))

	1

	All java.lang.* classes are available.

	2(1,2)

	Must happen prior to starting the JVM

	3

	After JVM is started

Classes/Objects

Java classes are presented wherever possible similar to Python classes. The
only major difference is that Java classes and objects are closed and cannot be
modified. As Java is strongly typed, casting operators are used to select
specific overloads when calling methods. Classes are either imported using a
module, loaded using JPackage or loaded with the JClass factory.

	Description

	Java

	Python

	Import a class 4

	import org.pkg.MyClass

	from org.pkg import MyClass

	Import a class and rename
4

	
	from org.pkg import MyClass as OurClass

	Import multiple classes
from a package 5

	
	from org.pkg import MyClass, AnotherClass

	Import a java package for
long name access 6

	
	import org.pkg

	Import a class static
7

	import org.pkg.MyClass.CONST_FIELD

	from org.pkg.MyClass import CONST_FIELD

	Import a class without
tld 8

	import zippy.NonStandard

	NonStandard = JClass('zippy.NonStandard')

	Construct an object

	MyClass myObject = new MyClass(1);

	myObject = MyClass(1)

	Constructing a cless with
full class name

	
	import org.pkg
myObject = org.pkg.MyClass(args)

	Get a static field

	int var = MyClass.staticField;

	var = MyClass.staticField

	Get a member field

	int var = myObject.memberField;

	var = myObject.memberField

	Set a static field 9

	MyClass.staticField = 2;

	MyClass.staticField = 2

	Set a member field 9

	myObject.memberField = 2;

	myObject.memberField = 2

	Call a static method

	MyClass.callStatic(1);

	MyClass.callStatic(1)

	Call a member method

	myObject.callMember(1);

	myObject.callMember(1)

	Access member with Python
naming conflict 10

	myObject.pass()

	myObject.pass_()

	Checking inheritance

	if (obj instanceof MyClass) {...}

	if (isinstance(obj, MyClass): ...

	Checking if Java class
wrapper

	
	if (isinstance(obj, JClass): ...

	Checking if Java object
wrapper

	
	if (isinstance(obj, JObject): ...

	Casting to a specific
type

	BaseClass b = (BaseClass)myObject;

	b = JObject(myObject, BaseClass)

	4(1,2)

	This will report an error if the class is not found.

	5

	This will report an error if the classes are not found.

	6

	Does not report errors if the package is invalid.

	7

	Constants, static fields, and static methods can be imported.

	8

	JClass loads any class by name including inner classes.

	9(1,2)

	This produces an error for final fields.

	10

	Underscore is added during wrapping.

Exceptions

Java exceptions extend from Python exceptions and can be dealt with in the same
way as Python native exceptions. JException serves as the base class for all
Java exceptions.

	Description

	Java

	Python

	Catch an exception

	try {
 myObject.throwsException();
} catch (java.lang.Exception ex)
{ ... }

	try:
 myObject.throwsException()
except java.lang.Exception as ex:
 ...

	Throw an exception to
Java

	throw new java.lang.Exception(
 "Problem");

	raise java.lang.Exception(
 "Problem")

	Checking if Java
exception wrapper

	
	if (isinstance(obj, JException): ...

	Closeable items

	try (InputStream is
 = Files.newInputStream(file))
{ ... }

	with Files.newInputStream(file) as is:
 ...

Primitives

Most Python primitives directly map into Java primitives. However, Python does
not have the same primitive types, and it is necessary to cast to a
specific Java primitive type whenever there are Java overloads that would
otherwise be in conflict. Each of the Java types are exposed in JPype
(JBoolean, JByte, JChar, JShort, JInt, JLong,
JFloat, JDouble).

	Description

	Java

	Python

	Casting to hit an
overload 11

	myObject.call((int)v);

	myObject.call(JInt(v))

	Create a primitive array

	int[] array = new int[5]

	array = JArray(JInt)(5)

	Create an initialized
primitive array 12

	int[] array = new int[]{1,2,3}

	array = JArray(JInt)([1,2,3])

	Put a specific primitive
type on a list

	List<Integer> myList
 = new ArrayList<>();
myList.add(1);

	from java.util import ArrayList
myList = ArrayList()
myList.add(JInt(1))

	Boxing a primitive 13

	Integer boxed = 1;

	boxed = JObject(JInt(1))

	11

	JInt acts as a casting operator

	12

	list, sequences, or np.array can be used to initialize.

	13

	JInt specifies the prmitive type. JObject boxes the primitive.

Strings

Java strings are similar to Python strings. They are both immutable and
produce a new string when altered. Most operations can use Java strings
in place of Python strings, with minor exceptions as Python strings
are not completely duck typed. When comparing or using as dictionary keys,
all JString objects should be converted to Python.

	Description

	Java

	Python

	Create a Java string
14

	String javaStr = new String("foo");

	myStr = JString("foo")

	Create a Java string from
bytes 15

	byte[] b;
String javaStr = new String(b, "UTF-8");

	b= b'foo'
myStr = JString(b, "UTF-8")

	Converting Java string

	
	str(javaStr)

	Comparing Python and Java
strings 16

	
	str(javaStr) == pyString

	Comparing Java strings

	javaStr.equals("foo")

	javaStr == "foo"

	Checking if java string

	
	if (isinstance(obj, JString): ...

	14

	JString constructs a java.lang.String

	15

	All java.lang.String constuctors work.

	16

	str() converts the object for comparison

Arrays

Arrays are create using the JArray class factory. They operate like Python lists, but they are
fixed in size.

	Description

	Java

	Python

	Create a single dimension
array

	MyClass[] array = new MyClass[5];

	array = JArray(MyClass)(5)

	Create a multi dimension
array

	MyClass[][] array2 = new MyClass[5][];

	array2 = JArray(MyClass, 2)(5)

	Access an element

	array[0] = new MyClass()

	array[0] = MyClass()

	Size of an array

	array.length

	len(array)

	Convert to Python list

	
	pylist = list(array)

	Iterate elements

	for (MyClass element: array)
{...}

	for element in array:
 ...

	Checking if java array
wrapper

	
	if (isinstance(obj, JArray): ...

Collections

Java standard containers are available and are overloaded with Python syntax where
possible to operate in a similar fashion to Python objects.

	Description

	Java

	Python

	Import list type

	import java.util.ArrayList;

	from java.util import ArrayList

	Construct a list

	List<Integer> myList=new ArrayList<>();

	myList=ArrayList()

	Get length of list

	int sz = myList.size();

	sz = len(myList)

	Get list item

	Integer i = myList.get(0)

	i = myList[0]

	Set list item 17

	myList.set(0, 1)

	myList[0]=Jint(1)

	Iterate list elements

	for (Integer element: myList)
{...}

	for element in myList:
 ...

	Import map type

	import java.util.HashMap;

	from java.util import HashMap

	Construct a map

	Map<String,Integer> myMap=new HashMap<>();

	myMap=HashMap()

	Get length of map

	int sz = myMap.size();

	sz = len(myMap)

	Get map item

	Integer i = myMap.get("foo")

	i = myMap["foo"]

	Set map item 17

	myMap.set("foo", 1)

	myMap["foo"]=Jint(1)

	Iterate map entries

	for (Map.Entry<String,Integer> e
 : myMap.entrySet())
 {...}

	for e in myMap.entrySet():
 ...

	17(1,2)

	Casting is required to box primitives to the correct type.

Reflection

Java reflection can be used to access operations that are outside the scope of
the JPype syntax. This includes calling a specific overload or even accessing
private methods and fields.

	Description

	Java

	Python

	Access Java reflection
class

	MyClass.class

	MyClass.class_

	Access a private field by
name 18

	
	cls = myObject.class_
field = cls.getDeclaredField(
 "internalField")
field.setAccessible(True)
field.get()

	Accessing a specific
overload 19

	
	cls = MyClass.class_
cls.getDeclaredMethod("call", JInt)
cls.invoke(myObject, JInt(1))

	Convert a
java.lang.Class into
Python wrapper 20

	
	# Something returned a java.lang.Class
MyClassJava = getClassMethod()

Convert to it to Python
MyClass = JClass(myClassJava)

	Load a class with a
external class loader

	ClassLoader cl
 = new ExternalClassLoader();
Class cls
 = Class.forName("External",
 True, cl)

	cl = ExternalClassLoader()
cls = JClass("External", loader=cl)

	Accessing base method
implementation

	
	from org.pkg import \
 BaseClass, MyClass
myObject = MyClass(1)
BaseClass.callMember(myObject, 2)

	18

	This is prohibited after Java 8

	19

	types must be exactly specified.

	20

	Rarely required unless the class was supplied external such as generics.

Implements and Extension

JPype can implement a Java interface by annotating a Python class. Each
method that is required must be implemented.

JPype does not support extending a class directly in Python. Where it is
necessary to exend a Java class, it is required to create a Java extension
with an interface for each methods that are to be accessed from Python.

	Description

	Java

	Python

	Implement an interface

	public class PyImpl
 implements MyInterface
{
 public void call()
 {...}
}

	@JImplements(MyInterface)
class PyImpl(object):
 @JOverride
 def call(self):
 pass

	Extending classes 21

	
	None

	Lambdas 21

	
	None

	21(1,2)

	Support for use of Python function as Java 8 lambda is WIP.

Don’t like the formatting? Feel the guide is missing something? Submit a pull request
at the project page.

API Reference

JVM Functions

These functions control and start the JVM.

	
jpype.startJVM(*args, **kwargs)

	Starts a Java Virtual Machine. Without options it will start
the JVM with the default classpath and jvmpath.

The default classpath is determined by jpype.getClassPath().
The default jvmpath is determined by jpype.getDefaultJVMPath().

	Parameters

	*args (Optional, str[]) – Arguments to give to the JVM.
The first argument may be the path the JVM.

	Keyword Arguments

	
	jvmpath (str) – Path to the jvm library file,
Typically one of (libjvm.so, jvm.dll, …)
Using None will apply the default jvmpath.

	classpath (str,[str]) – Set the classpath for the jvm.
This will override any classpath supplied in the arguments
list. A value of None will give no classpath to JVM.

	ignoreUnrecognized (bool) – Option to JVM to ignore
invalid JVM arguments. Default is False.

	convertStrings (bool) – Option to JPype to force Java strings to
cast to Python strings. This option is to support legacy code
for which conversion of Python strings was the default. This
will globally change the behavior of all calls using
strings, and a value of True is NOT recommended for newly
developed code.

The default value for this option during 0.7 series is
True. The option will be False starting in 0.8. A
warning will be issued if this option is not specified
during the transition period.

	Raises

	
	OSError – if the JVM cannot be started or is already running.

	TypeError – if an invalid keyword argument is supplied
or a keyword argument conflicts with the arguments.

	
jpype.shutdownJVM()

	Shuts down the JVM.

This method shuts down the JVM and thus disables access to existing
Java objects. Due to limitations in the JPype, it is not possible to
restart the JVM after being terminated.

	
jpype.getDefaultJVMPath()

	Retrieves the path to the default or first found JVM library

	Returns

	The path to the JVM shared library file

	Raises

	
	JVMNotFoundException – If there was no JVM found in the search path.

	JVMNotSupportedException – If the JVM was found was not compatible with
Python due to cpu architecture.

	
jpype.getClassPath(env=True)

	Get the full java class path.

Includes user added paths and the environment CLASSPATH.

	Parameters

	env (Optional, bool) – If true then environment is included.
(default True)

Class importing

JPype supports several styles of importing. The newer integrated style is
provided by the imports module. The older JPackage method is available for
accessing package trees with less error checking. Direct loading of Java
classes can be made with JClass.

For convenience, the JPype module predefines the following JPackage
instances for java and javax.

	
class jpype.JPackage(name, strict=False, pattern=None)

	Gateway for automatic importation of Java classes.

This class allows structured access to Java packages and classes.
This functionality has been replaced by jpype.imports, but is still
useful in some cases.

Only the root of the package tree need be declared with the JPackage
constructor. Sub-packages will be created on demand.

For example, to import the w3c DOM package:

Document = JPackage('org').w3c.dom.Document

Under some situations such as a missing jar the resulting object
will be a JPackage object rather than the expected java class. This
results in rather challanging debugging messages. Thus the
jpype.imports module is preferred. To prevent these types of errors
a package can be declares as strict which prevents expanding
package names that do not comply with Java package name conventions.

	Parameters

	
	path (str) – Path into the Java class tree.

	strict (bool, optional) – Requires Java paths to conform to the Java
package naming convention. If a path does not conform and a class
with the required name is not found, the AttributeError is raise
to indicate that the class was not found.

Example

Alias into a library
google = JPackage("com.google")

Access members in the library
result = google.common.IntMath.pow(x,m)

Class Factories

	
class jpype.JClass

	Meta class for all java class instances.

JClass when called as an object will contruct a new java Class wrapper.

All python wrappers for java classes derived from this type.
To test if a python class is a java wrapper use
isinstance(obj, jpype.JClass).

	Parameters

	className (str) – name of a java type.

	Keyword Arguments

	
	loader (java.lang.ClassLoader) – specifies a class loader to use
when creating a class.

	initialize (bool) – Passed to class loader when loading a class
using the class loader.

	Returns

	a new wrapper for a Java class

	Return type

	JavaClass

	Raises

	TypeError – if the component class is invalid or could not be found.

	
class jpype.JArray(*args, **kwargs)

	Create a java array class for a Java type of a given dimension.

This serves as a base type and factory for all Java array classes.
The resulting Java array class can be used to construct a new
array with a given size or members.

JPype arrays support Python operators for iterating, length, equals,
not equals, subscripting, and limited slicing. They also support Java
object methods, clone, and length property. Java arrays may not
be resized, thus elements cannot be added nor deleted. Currently,
applying the slice operator produces a new Python sequence.

Example

Define a new array class for ``int[]``
IntArrayCls = JArray(JInt)

Create an array holding 10 elements
equivalent to Java ``int[] x=new int[10]``
x = IntArrayCls(10)

Create a length 3 array initialized with [1,2,3]
equivalent to Java ``int[] x = new int[]{1,2,3};``
x = IntArrayCls([1,2,3])

Operate on an array
print(len(x))
print(x[0])
print(x[:-2])
x[1:]=(5,6)

if isinstance(x, JArray):
 print("object is a java array")

if issubclass(IntArrayCls, JArray):
 print("class is a java array type.")

	Parameters

	
	javaClass (str,type) – Is the type of element to hold in
the array.

	ndims (Optional,int) – the number of dimensions of the array
(default=1)

	Returns

	A new Python class that representing a Java array class.

	Raises

	TypeError – if the component class is invalid or could not be found.

Note

javaClass can be specified in three ways:

	as a string with the name of a java class.

	as a Java primitive type such as jpype.JInt.

	as a Java class type such as java.lang.String.

	
jpype.JException

	

Java Types

JPype has types for each of the Java primitives: JBoolean, JByte,
JShort, JInt, JLong, JFloat and JDouble. There is one
class for working with Java objects, JObject. This serves to cast to a
specific object type. There is a JString type provided for convenience
when creating or casting to strings.

	
class jpype.JObject(*args, **kwargs)

	Base class for all object instances.

It can be used to test if an object is a java object instance with
isinstance(obj, JObject).

Calling JObject as a function can be used to covert or cast to
specific Java type. It will box primitive types and supports an
option type to box to.

This wrapper functions four ways.

	If the no type is given the object is automatically
cast to type best matched given the value. This can be used
to create a boxed primitive. JObject(JInt(i))

	If the type is a primitve, the object will be the boxed type of that
primitive. JObject(1, JInt)

	If the type is a Java class and the value is a Java object, the
object will be cast to the Java class and will be an exact match to
the class for the purposes of matching arguments. If the object
is not compatible, an exception will be raised.

	If the value is a python wrapper for class it will create a class
instance. This is aliased to be much more obvious as the class_
member of each Java class.

	Parameters

	
	value – The value to be cast into an Java object.

	type (Optional, type) – The type to cast into.

	Raises

	TypeError – If the object cannot be cast to the specified type, or
the requested type is not a Java class or primitive.

	
class jpype.JString(*args, **kwargs)

	Base class for java.lang.String objects

When called as a function, this class will produce a java.lang.String
object. It can be used to test if an object is a Java string
using isinstance(obj, JString).

Threading

	
jpype.synchronized(obj)

	Creates a resource lock for a Java object.

Produces a monitor object. During the lifespan of the monitor the Java
will not be able to acquire a thread lock on the object. This will
prevent multiple threads from modifying a shared resource.

This should always be used as part of a Python with startment.

	Parameters

	obj – A valid Java object shared by multiple threads.

Example:

with synchronized(obj):
 # modify obj values

lock is freed when with block ends

	
jpype.isThreadAttachedToJVM()

	Checks if a thread is attached to the JVM.

Python automatically attaches threads when a Java method is called.
This creates a resource in Java for the Python thread. This method
can be used to check if a Python thread is currently attached so that
it can be disconnected prior to thread termination to prevent leaks.

	Returns

	True if the thread is attached to the JVM, False if the thread is
not attached or the JVM is not running.

	
jpype.attachThreadToJVM()

	Attaches a thread to the JVM.

The function manually connects a thread to the JVM to allow access to
Java objects and methods. JPype automaticatlly attaches when a Java
resource is used, so a call to this is usually not needed.

	Raises

	RuntimeError – If the JVM is not running.

	
jpype.detachThreadFromJVM()

	Detaches a thread from the JVM.

This function detaches the thread and frees the associated resource in
the JVM. For codes making heavy use of threading this should be used
to prevent resource leaks. The thread can be reattached, so there
is no harm in detaching early or more than once. This method cannot fail
and there is no harm in calling it when the JVM is not running.

Decorators

JPype uses ordinary Python classes to implement functionality in Java. Adding
these decorators to a Python class will mark them for use by JPype to interact
with Java classes.

Proxies

JPype can implement Java interfaces either by using decorators or by manually
creating a JProxy. Java only support proxying interfaces, thus we cannot
extend an existing Java class.

	
jpype.JProxy

	

Customized Classes

JPype provides standard customizers for Java interfaces so that Java objects
have syntax matching the corresponding Python objects. The customizers are
automatically bound to the class on creation without user intervention. We are
documentating the functions that each customizer adds here.

These internal classes can be used as example of how to implement your own
customizers for Java classes.

	
class jpype._jcollection._JIterable

	Customizer for java.util.Iterable

This customizer adds the Python iterator syntax to classes that
implement Java Iterable.

	
class jpype._jcollection._JCollection

	Customizer for java.util.Collection

This customizer adds the Python functions len() and del to
Java Collions to allow for Python syntax.

	
class jpype._jcollection._JList

	Customizer for java.util.List

This customizer adds the Python list operator to function on classes
that implement the Java List interface.

	
class jpype._jcollection._JMap

	Customizer for java.util.Map

This customizer adds the Python list and len operators to classes
that implement the Java Map interface.

	
class jpype._jcollection._JIterator

	Customizer for java.util.Iterator

This customizer adds the Python iterator concept to classes
that implement the Java Iterator interface.

	
class jpype._jcollection._JEnumeration

	Customizer for java.util.Enumerator

This customizer adds the Python iterator concept to classes
that implement the Java Enumerator interface.

	
class jpype._jio._JCloseable

	Customizer for java.lang.AutoCloseable and java.io.Closeable

This customizer adds support of the with operator to all Java
classes that implement Java AutoCloseable interface.

Example:

from java.nio.files import Files, Paths
with Files.newInputStream(Paths.get("foo")) as fd:
 # operate on the input stream

Input stream closes at the end of the block.

Modules

Optional JPype behavior is stored in modules. These optional modules can be
imported to add additional functionality.

JPype Imports Module

Once imported this module will place the standard TLDs into the python
scope. These tlds are java, com, org, gov, mil,
net and edu. Java symbols from these domains can be imported
using the standard Python syntax.

Import customizers are supported in Python 3.6 or greater.

	Forms supported:

	
	import <java_pkg> [as <name>]

	import <java_pkg>.<java_class> [as <name>]

	from <java_pkg> import <java_class>[,<java_class>*]

	from <java_pkg> import <java_class> [as <name>]

	from <java_pkg>.<java_class> import <java_static> [as <name>]

	from <java_pkg>.<java_class> import <java_inner> [as <name>]

For further information please read the JImport guide.

	Requires:

	Python 3.6 or later

Example:

import jpype
import jpype.imports
jpype.startJVM()

Import java packages as modules
from java.lang import String

	
jpype.imports.registerDomain(mod, alias=None)

	Add a java domain to python as a dynamic module.

This can be used to bind a Java path to a Python path.

	Parameters

	
	mod (str) – Is the Python module to bind to Java.

	alias (str, optional) – Is the name of the Java path if different
than the Python name.

	
jpype.imports.registerImportCustomizer(customizer)

	Import customizers can be used to import python packages
into java modules automatically.

	
class jpype.imports.JImportCustomizer

	Base class for Import customizer.

Import customizers should implement canCustomize and getSpec.

Example:

Site packages for each java package are stored under $DEVEL/<java_pkg>/py
class SiteCustomizer(jpype.imports.JImportCustomizer):
 def canCustomize(self, name):
 if name.startswith('org.mysite') and name.endswith('.py'):
 return True
 return False
 def getSpec(self, name):
 pname = name[:-3]
 devel = os.environ.get('DEVEL')
 path = os.path.join(devel, pname,'py','__init__.py')
 return importlib.util.spec_from_file_location(name, path)

JPype Pickle Module

This module contains overloaded Pickler and Unpickler classes that operate
on Java classes. Pickling of Java objects is restricted to classes
that implement Serializable. Mixed pickles files containing both
Java and Python objects are allowed. Only one copy of each Java object
will appear in the pickle file even it is appears multiple times in the
data structure.

JPicklers and JUnpickler use Java ObjectOutputStream and ObjectInputStream
to serial objects. All of the usual java serialization errors may be
thrown.

For Python 3 series, this is backed by the native cPickler implementation.

Example:

myobj = jpype.JClass('java.util.ArrayList')
myobj.add("test")

from jpype.pickle import JPickler, JUnpickler
with open("test.pic", "wb") as fd:
 JPickler(fd).dump(myobj)

with open("test.pic", "rb") as fd:
 newobj = JUnpickler.load(fd)

Proxies and other JPype specific module resources cannot be pickled currently.

	Requires:

	Python 3.6 or later

	
class jpype.pickle.JPickler(file, *args, **kwargs)

	Pickler overloaded to support Java objects

	Parameters

	
	file – a file or other writeable object.

	*args – any arguments support by the native pickler.

	Raises

	
	java.io.NotSerializableException – if a class is not serializable or
one of its members

	java.io.InvalidClassException – an error occures in constructing a
serialization.

	
class jpype.pickle.JUnpickler(file, *args, **kwargs)

	Unpickler overloaded to support Java objects

	Parameters

	
	file – a file or other readable object.

	*args – any arguments support by the native unpickler.

	Raises

	
	java.lang.ClassNotFoundException – if a serialized class is not
found by the current classloader.

	java.io.InvalidClassException – if the serialVersionUID for the
class does not match, usually as a result of a new jar
version.

	java.io.StreamCorruptedException – if the pickle file has been
altered or corrupted.

JPype Beans Module

This customizer finds all occurances of methods with get or set and converts
them into Python properties. This behavior is sometimes useful in programming
with JPype with interactive shells, but also leads to a lot of confusion.
Is this class exposing a variable or is this a property added JPype. It was
the default behavior until 0.7.

As an unnecessary behavior that violates both the Python principle
“There should be one– and preferably only one –obvious way to do it.” and
the C++ principle “You only pay for what you use”. Thus this misfeature
was removed from the distribution as a default. However, given that it is
at times useful to have methods appear as properties, it was moved to a
an optional module.

To use beans as properties:

import jpype.beans

The beans property modification is a global behavior and applies retroactively
to all classes currently loaded. Once started it can never be undone.

JPype Types Module

Optional module containing only the Java types and factories used by
JPype. Classes in this module include JArray, JClass,
JBoolean, JByte, JChar, JShort, JInt, JLong,
JFloat, JDouble, JString, JObject, and JException.

Example

from jpype.types import *

JImport

Module for dynamically loading Java Classes using the import system.

This is a replacement for the jpype.JPackage(“com”).fuzzy.Main type syntax.
It features better safety as the objects produced are checked for class
existence. To use java imports, import the domains package prior to
importing a java class.

This module supports three different styles of importing java classes.

1) Import of the package path

import <java_package_path>

Importing a series of package creates a path to all classes contained
in that package. It does not provide access the the contained packages.
The root package is added to the global scope. Imported packages are
added to the directory of the base module.

import java.lang # Adds java as a module
import java.util

mystr = java.lang.String('hello')
mylist = java.util.LinkedList()
path = java.nio.files.Paths.get() # ERROR java.nio.files not imported

2) Import of the package path as a module

import <java_package> as <var>

A package can be imported as a local variable. This provides access to
all java classes in that package. Contained packages are not available.

	Example:

	import java.nio as nio
bb = nio.ByteBuffer()
path = nio.file.Path() # ERROR subpackages file must be imported

3) Import a class from an object

from <java_package> import <class>[,<class>*] [as <var>]

An individual class can be imported from a java package. This supports
inner classes as well.

Example:

Import one class
from java.lang import String
mystr = String('hello')

Import multiple classes
from java.lang import Number,Integer,Double
Import java inner class java.lang.ProcessBuilder.Redirect
from java.lang.ProcessBuilder import Redirect

This method can also be used to import a static variable or method
from a class.

Import caveats

Wild card Imports

Wild card imports for classes will import all static method and
fields into the global namespace. They will also import any
inner classes that have been previously be accessed.

Wild card importation of package symbols are not currently supported
and have unpredictable effects. Because of the nature of class loaders
it is not possible to determine what classes are currently loaded. Some
classes are loaded by the boot strap loader and thus are not available
for discovery.

As currently implemented [from <java_package> import *] will import
all classes and static variables which have already been imported by
another import call. As a result which classes will be imported
is based on the code pat and thus very unreliable.

It is possible to determine the classes available using Guava for
java extension jars or for jars specifically loaded in the class path.
But this is sufficiently unreliable that we recommend not using wildcards
for any purpose.

Keyword naming

Occasionally a java class may contain a python keyword.
Python keywords as automatically remapped using trailing underscore.

Example:

from org.raise_ import Object => imports "org.raise.Object"

Controlling Java package imports

By default domains imports four top level domains (TLD) into the python
import system (com, gov, java, org). Additional domains can be added
by calling registerDomain. Domains can be an alias for a java package
path.

Example:

domains.registerDomain('jname')
from jname.framework import FrameObject
domains.registerDomain('jlang', alias='java.lang')
from jlang import String

Limitations

	Wildcard imports are unreliable and should be avoided. Limitations
in the Java specification are such that there is no way to get
class information at runtime. Python does not have a good hook
to prevent the use of wildcard loading.

	Non-static members can be imported but can not be called without an
instance. Jpype does not provide an easy way to determine which
functions objects can be called without an object.

Changelog

This changelog only contains changes from the first pypi release (0.5.4.3) onwards.

	Next version - unreleased

	0.7.5 - 2020-05-10

	Updated docs.

	Fix corrupt conda release.

	0.7.4 - 4-28-2020

	Corrected a resource leak in arrays that affects array initialization, and variable
argument methods.

	Upgraded diagnostic tracing and JNI checks to prevent future resource leaks.

	0.7.3 - 4-17-2020

	Replaced type management system, memory management for internal
classes is now completely in Java to allow enhancements for
buffer support and revised type conversion system.

	Python module jpype.reflect will be removed in the next release.

	jpype.startJVM option convertStrings default will become False
in the next release.

	Undocumented feature of using a Python type in JObject(obj, type=tp)
is deprecated to support casting to Python wrapper types in Java in a
future release.

	Dropped support for Cygwin platform.

	JFloat properly follows Java rules for conversion from JDouble.
Floats outside of range map to inf and -inf.

	java.lang.Number converts automatically from Python and Java numbers.
Java primitive types will cast to their proper box type when passed
to methods and fields taking Number.

	java.lang.Object and java.lang.Number box signed, sized numpy types
(int8, int16, int32, int64, float32, float64) to the Java boxed type
with the same size automatically. Architecture dependent numpy
types map to Long or Double like other Python types.

	Explicit casting using primitives such as JInt will not produce an
OverflowError. Implicit casting from Python types such as int or float
will.

	Returns for number type primitives will retain their return type
information. These are derived from Python int and float types
thus no change in behavior unless chaining from a Java methods
which is not allowed in Java without a cast.
JBoolean and JChar still produce Python types only.

	Add support for direct conversion of multi-dimensional primitive arrays
with JArray.of(array, [dtype=type])

	java.nio.Buffer derived objects can convert to memoryview if they
are direct. They can be converted to NumPy arrays with
numpy.asarray(memoryview(obj)).

	Proxies created with @JImplements properly implement toString,
hashCode, and equals.

	Proxies pass Python exceptions properly rather converting to
java.lang.RuntimeException

	JProxy.unwrap() will return the original instance object for proxies
created with JProxy. Otherwise will return the proxy.

	JProxy instances created with the convert=True argument will automatic
unwrap when passed from Java to Python.

	JProxy only creates one copy of the invocation handler per
garbage collection rather than once per use. Thus proxy objects
placed in memory containers will have the same object id so long
as Java holds on to it.

	@JImplements with keyword argument deferred can be started
prior to starting the JVM. Methods are checked at first object
creation.

	Fix bug that was causing java.lang.Comparable, byte[],
and char[] to be unhashable.

	Fix bug causing segfault when throwing Exceptions which lack a
default constructor.

	Fixed segfault when methods called by proxy have incorrect number of
arguments.

	Fixed stack overflow crash on iterating ImmutableList

	java.util.Map conforms to Python collections.abc.Mapping API.

	java.lang.ArrayIndexOutOfBoundsException can be caught with
IndexError for consistency with Python exception usage.

	java.lang.NullPointerException can be caught with ValueError
for consistency with Python exception usage.

	Replaced type conversion system, type conversions test conversion
once per type improving speed and increasing flexiblity.

	User defined implicit conversions can be created with @JConversion
decorator on Python function taking Java class and Python object.
Converter function must produce a Java class instance.

	pathlib.Path can be implicitly converted into java.lang.File
and java.lang.Path.

	datetime.datatime can implicitly convert to java.time.Instant.

	dict and collections.abc.Mapping can convert to java.util.Map
if all element are convertable to Java. Otherwise, TypeError is
raised.

	list and collections.abc.Sequence can convert to java.util.Collection
if all elements are convertable to Java. Otherwise, TypeError is
raised.

	0.7.2 - 2-28-2020

	C++ and Java exceptions hold the traceback as a Python exception
cause. It is no longer necessary to call stacktrace() to retrieve
the traceback information.

	Speed for call return path has been improved by a factor of 3.

	Multidimensional array buffer transfers increase speed transfers
to numpy substantially (orders of magnitude). Multidimension primitive
transfers are read-only copies produced inside the JVM with C contiguous
layout.

	All exposed internals have been replaced with CPython implementations
thus symbols __javaclass__, __javavalue__, and __javaproxy__
have been removed. A dedicated Java slot has been added to all CPython
types derived from _jpype class types. All private tables have been
moved to CPython. Java types must derive from the metaclass JClass
which enforces type slots. Mixins of Python base classes is not
permitted. Objects, Proxies, Exceptions, Numbers, and Arrays
derive directly from internal CPython implementations.
See the Buffers and NumPy removal for details of all changes.

	Internal improvements to tracing and exception handling.

	Memory leak in convertToDirectBuffer has been corrected.

	= Arrays slices are now a view which support writeback to the original

	like numpy array. Array slices are no longer covariant returns of
list or numpy.array depending on the build procedure.

	Array slices support steps for both set and get.

	Arrays now implement __reversed__

	Incorrect mapping of floats between 0 and 1 to False in setting
Java boolean array members is corrected.

	Java arrays now properly assert range checks when setting elements
from sequences.

	Java arrays support memoryview API and no longer required NumPy
to transfer buffer contents.

	Numpy is no longer an optional extra. Memory transfer to NumPy
is available without compiling for numpy support.

	JInterface is now a meta class. Use isinstance(cls, JInterface)
to test for interfaces.

	Fixed memory leak in Proxy invocation

	Fixed bug with Proxy not converting when passed as an argument to
Python functions during execution of proxies

	Missing tlds “mil”, “net”, and “edu” added to default imports.

	Enhanced error reporting for UnsupportedClassVersion during startup.

	Corrections for collection methods to improve complience with
Python containers.

	java.util.Map gives KeyError if the item is not found. Values that
are null still return None as expected. Use get() if
empty keys are to be treated as None.

	java.util.Collection __delitem__ was removed as it overloads
oddly between remove(Object) and remove(int) on Lists.
Use Java remove() method to access the original Java behavior,
but a cast is strongly recommended to to handle the overload.

	java.lang.IndexOutOfBoundsException can be caught with IndexError
for complience when accessing java.util.List elements.

	0.7.1 - 12-16-2019

	Updated the keyword safe list for Python 3.

	Automatic conversion of CharSequence from Python strings.

	java.lang.AutoCloseable supports Python “with” statement.

	Hash codes for boxed types work properly in Python 3 and can be
used as dictionary keys again (same as JPype 0.6). Java arrays
have working hash codes, but as they are mutable should not
be used as dictionary keys. java.lang.Character, java.lang.Float,
and java.lang.Double all work as dictionary keys, but due to
differences in the hashing algorithm do not index to the same
location as Python native types and thus may cause issues
when used as dictionary keys.

	Updated getJVMVersion to work with JDK 9+.

	Added support for pickling of Java objects using optional module
jpype.pickle

	Fixed incorrect string conversion on exceptions. str() was
incorrectly returning getMessage rather than toString.

	Fixed an issue with JDK 12 regarding calling methods with reflection.

	Removed limitations having to do with CallerSensitive methods. Methods
affected are listed in Caller Sensitive Methods. Caller sensitive
methods now receive an internal JPype class as the caller

	Fixed segfault when converting null elements while accessing a slice
from a Java object array.

	PyJPMethod now supports the FunctionType API.

	Tab completion with Jedi is supported. Jedi is the engine behind
tab completion in many popular editors and shells such as IPython.
Jedi version 0.14.1 is required for tab completion as earlier versions
did not support annotations on compiled classes. Tab completion
with older versions requires use of the IPython greedy method.

	JProxy objects now are returned from Java as the Python objects
that originate from. Older style proxy classes return the
inst or dict. New style return the proxy class instance.
Thus proxy classes can be stored on generic Java containers
and retrieved as Python objects.

	0.7.0 - 2019

	Doc strings are generated for classes and methods.

	Complete rewrite of the core module code to deal unattached threads,
improved hardening, and member management. Massive number of internal
bugs were identified during the rewrite and corrected.
See the JPype 0.7 Core ChangeLog for details of all changes.

	API breakage:

	Java strings conversion behavior has changed. The previous behavior was
switchable, but only the default convert to Python was working.
Converting to automatically lead to problems in which is was impossible
to work with classes like StringBuilder in Java. To convert a Java
string use str(). Therefore, string conversion is currently selected
by a switch at the start of the JVM. The default shall be False
starting in JPype 0.8. New code is encouraged to use the future default
of False. For the transition period the default will be True with a
warning if not policy was selected to encourage developers to pick the
string conversion policy that best applies to their application.

	Java exceptions are now derived from Python exception. The old wrapper
types have been removed. Catch the exception with the actual Java
exception type rather than JException.

	Undocumented exceptions issued from within JPype have been mapped to the
corresponding Python exception types such as TypeError and
ValueError appropriately. Code catching exceptions from previous
versions should be checked to make sure all exception paths are being
handled.

	Undocumented property import of Java bean pattern get/set accessors was
removed as the default. It is available with import jpype.beans, but
its use is discouraged.

	API rework:

	JPype factory methods now act as base classes for dynamic
class trees.

	Static fields and methods are now available in object
instances.

	Inner classes are now imported with the parent class.

	jpype.imports works with Python 2.7.

	Proxies and customizers now use decorators rather than
exposing internal classes. Existing JProxy code
still works.

	Decorator style proxies use @JImplements and @JOverload
to create proxies from regular classes.

	Decorator style customizers use @JImplementionFor

	Module jpype.types was introduced containing only
the Java type wrappers. Use from jpype.types import * to
pull in this subset of JPype.

	synchronized using the Python with statement now works
for locking of Java objects.

	Previous bug in initialization of arrays from list has been
corrected.

	Added extra verbiage to the to the raised exception when an overloaded
method could not be matched. It now prints a list of all possible method
signatures.

	The following is now DEPRECATED

	jpype.reflect.* - All class information is available with .class_

	Unncessary JException from string now issues a warning.

	The followind is now REMOVED

	Python thread option for JPypeReferenceQueue. References are always handled with
with the Java cleanup routine. The undocumented setUsePythonThreadForDaemon()
has been removed.

	Undocumented switch to change strings from automatic to manual
conversion has been removed.

	Artifical base classes JavaClass and JavaObject have been removed.

	Undocumented old style customizers have been removed.

	Many internal jpype symbols have been removed from the namespace to
prevent leakage of symbols on imports.

	promoted `–install-option` to a `–global-option` as it applies to the build as well
as install.

	Added `–enable-tracing` to setup.py to allow for compiling with tracing
for debugging.

	Ant is required to build jpype from source, use --ant= with setup.py
to direct to a specific ant.

	0.6.3 - 2018-04-03

	Java reference counting has been converted to use JNI
PushLocalFrame/PopLocalFrame. Several resource leaks
were removed.

	java.lang.Class<>.forName() will now return the java.lang.Class.
Work arounds for requiring the class loader are no longer needed.
Customizers now support customization of static members.

	Support of java.lang.Class<>

	java.lang.Object().getClass() on Java objects returns a java.lang.Class
rather than the Python class

	java.lang.Object().__class__ on Java objects returns the python class
as do all python objects

	java.lang.Object.class_ maps to the java statement java.lang.Object.class and
returns the java.lang.Class<java.lang.Object>

	java.lang.Class supports reflection methods

	private fields and methods can be accessed via reflection

	annotations are avaiable via reflection

	Java objects and arrays will not accept setattr unless the
attribute corresponds to a java method or field whith
the exception of private attributes that begin with
underscore.

	Added support for automatic conversion of boxed types.

	Boxed types automatically convert to python primitives.

	Boxed types automatically convert to java primitives when resolving functions.

	Functions taking boxed or primitives still resolve based on closest match.

	Python integer primitives will implicitly match java float and double as per
Java specification.

	Added support for try with resources for java.lang.Closeable.
Use python “with MyJavaResource() as resource:” statement
to automatically close a resource at the end of a block.

	0.6.2 - 2017-01-13

	Fix JVM location for OSX.

	Fix a method overload bug.

	Add support for synthetic methods

	0.6.1 - 2015-08-05

	Fix proxy with arguments issue.

	Fix Python 3 support for Windows failing to import winreg.

	Fix non matching overloads on iterating java collections.

	0.6.0 - 2015-04-13

	Python3 support.

	Fix OutOfMemoryError.

	0.5.7 - 2014-10-29

	No JDK/JRE is required to build anymore due to provided jni.h. To
override this, one needs to set a JAVA_HOME pointing to a JDK
during setup.

	Better support for various platforms and compilers (MinGW, Cygwin,
Windows)

	0.5.6 - 2014-09-27

	Note: In this release we returned to the three point number
versioning scheme.

	Fix #63: ‘property’ object has no attribute ‘isBeanMutator’

	Fix #70: python setup.py develop does now work as expected

	Fix #79, Fix #85: missing declaration of ‘uint’

	Fix #80: opt out NumPy code dependency by ‘–disable-numpy’
parameter to setup. To opt out with pip
append –install-option=”–disable-numpy”.

	Use JVMFinder method of @tcalmant to locate a Java runtime

	0.5.5.4 - 2014-08-12

	Fix: compile issue, if numpy is not available (NPY_BOOL
n/a). Closes #77

	0.5.5.3 - 2014-08-11

	Optional support for NumPy arrays in handling of Java arrays. Both
set and get slice operators are supported. Speed improvement of
factor 10 for setting and factor 6 for getting. The returned
arrays are typed with the matching NumPy type.

	Fix: add missing wrapper type ‘JShort’

	Fix: Conversion check for unsigned types did not work in array
setters (tautological compare)

	0.5.5.2 - 2014-04-29

	Fix: array setter memory leak (ISSUE: #64)

	0.5.5.1 - 2014-04-11

	Fix: setup.py now runs under MacOSX with Python 2.6 (referred to
missing subprocess function)

	0.5.5 - 2014-04-11

	Note that this release is not compatible with Python 2.5 anymore!

	Added AHL changes

	replaced Python set type usage with new 2.6.x and higher

	fixed broken Python slicing semantics on JArray objects

	fixed a memory leak in the JVM when passing Python lists to
JArray constructors

	prevent ctrl+c seg faulting

	corrected new[]/delete pairs to stop valgrind complaining

	ship basic PyMemoryView implementation (based on numpy’s) for Python 2.6 compatibility

	Fast sliced access for primitive datatype arrays (factor of 10)

	Use setter for Java bean property assignment even if not having a
getter by @baztian

	Fix public methods not being accessible if a Java bean property
with the same name exists by @baztian (Warning: In rare cases
this change is incompatibile to previous releases. If you are
accessing a bean property without using the get/set method and the
bean has a public method with the property’s name you have to
change the code to use the get/set methods.)

	Make jpype.JException catch exceptions from subclasses by @baztian

	Make more complex overloaded Java methods accessible (fixes
https://sourceforge.net/p/jpype/bugs/69/) by @baztian and
anonymous

	Some minor improvements inferring unnecessary copies in extension
code

	Some JNI cleanups related to memory

	Fix memory leak in array setters

	Fix memory leak in typemanager

	Add userguide from sourceforge project by @baztian

	0.5.4.5 - 2013-08-25

	Added support for OSX 10.9 Mavericks by @rmangino (#16)

	0.5.4.4 - 2013-08-10

	Rewritten Java Home directory Search by @marsam (#13, #12 and #7)

	Stylistic cleanups of setup.py

	0.5.4.3 - 2013-07-27

	Initial pypi release with most fixes for easier installation

Developer Guide

Overview

This document describes the guts of jpype. It is intended
lay out the architecture of the jpype code to aid intrepid lurkers
to develop and debug the jpype code once I am run over by a bus.
For most of this document I will use the royal we, except where
I am giving personal opinions expressed only by yours truly, the
author Thrameos.

History

When I started work on this project it had already existed for over 10 years.
The original developer had intended a much larger design with modules to
support multiple languages such as Ruby. As such it was constructed with
three layers of abstraction. It has a wrapper layer over Java in C++, a
wrapper layer for the Python api in C++, and an abstraction layer intended
to bridge Python and other interpreted languages. This multilayer abstraction
ment that every debugging call had to drop through all of those layers.
Memory management was split into multiple pieces with Java controlling a
portion of it, C++ holding a bunch of resources, Python holding additional
resources, and HostRef controlling the lifetime of objects shared between the
layers. It also had its own reference counting system for handing Java
references on a local scale.

This level of complexity was just about enough to scare off all but the most
hardened programmer. Thus I set out to eliminate as much of this as I could.
Java already has its own local referencing system to deal in the form of
LocalFrames. It was simply a matter of setting up a C++ object to
hold the scope of the frames to eliminate that layer. The Java abstraction
was laid out in a fashion somewhat orthagonally to the Java inheritance
diagram. Thus that was reworked to something more in line which could be
safely completed without disturbing other layers. The multilanguage
abstraction layer was already pierced in multiple ways for speed. However,
as the abastraction interwove throughout all the library it was a terrible
lift to remove and thus required gutting the Python layer as well to support
the operations that were being performed by the HostRef.

The remaining codebase is fairly slim and reasonably streamlined. This
rework cut out about 30% of the existing code and sped up the internal
operations. The Java C++ interface matches the Java class hierachy.

Architecture

JPype is split into several distinct pieces.

	jpype Python module

	The majority of the front end logic for the toolkit is in Python jpype module.
This module deals with the construction of class wrappers and control functions.
The classes in the layer are all prefixed by J.

	_jpype CPython module

	The native module is supported by a CPython module called _jpype. The _jpype
module is located in native/python and has C style classes with a prefix PyJP.

This CPython layer acts as a front end for passing to the C++ layer.
It performs some error checking. In addition to the module functions in
_JModule, the module has multiple Python classes to support the native jpype
code such as _JClass, _JArray, _JValue, _JValue, etc.

	CPython API wrapper

	In addition to the exposed Python module layer, there is also a C++ wrapper
for the Python API. This is located in native/python and has the prefix
JPPy for all classes. jp_pythontypes wraps the required parts of
the CPython API in C++ for use in the C++ layer.

	C++ JNI layer

	The guts that drive Java are in the C++ layer located in native/common. This layer
has the namespace JP. The code is divided into wrappers for each Java type,
a typemanager for mapping from Java names to class instances, support classes
for proxies, and a thin JNI layer used to help ensure rigerous use of the same
design patterns in the code. The primary responsibility of this layer is
type conversion and matching of method overloads.

	Java layer

	In addition to the C++ layer, jpype has a native Java layer. This code
is compiled as a “thunk” which is loaded into the JVM in the form of a
a binary stored as a string. Code for Java is found in native/java.
The Java layer is divided into two parts,
a bootstrap loader and a jar containing the support classes. The Java
layer is responsible managing the lifetime of shared Python, Java, and C++ objects.

jpype module

The jpype module itself is made of a series of support classes which
act as factories for the individual wrappers that are created to mirror
each Java class. Because it is not possible to wrap all Java classes
with staticly created wrappers, instead jpype dynamically creates
Python wrappers as requested by the user.

The wrapping process is triggered in two ways. The user can manually
request creating a class by importing a class wrapper with jpype.imports
or JPackage or by manually invoking it with JClass. Or the class wrapper
can be created automatically as a result of a return type or exception
thrown to the user.

Because the classes are created dynamically, the class structure
uses a lot of Python meta programming.
Each class wrapper derives from the class wrappers of each of the
wrappers corresponding to the Java classes that each class extends
and implements. The key to this is to hacked mro. The mro
orders each of the classes in the tree such that the most drived
class methods are exposed, followed by each parent class. This
must be ordered to break ties resulting from multiple inheritance
of interfaces. The factory classes are grafted into the type system
using __instancecheck__ and __subtypecheck__.

resource types

JPype largely maps to the same concepts as Python with a few special elements.
The key concept is that of a Factory which serves to create Java resources
dynamically as requested. For example there is no Python notation to
create a int[][] as the concept of dimensions are fluid in Python.
Thus a factory type creates the actual object instance type with
JArray(JInt,2) Like Python objects, Java objects derives from a
type object which is called JClass that serves as a meta type for
all Java derived resources. Additional type like object JArray
and JInterface serve to probe the relationships between types.
Java object instances are created by calling the Java class wrapper just
like a normal Python class. A number of pseudo classes serve as placeholders
for Java types so that it is not necessary to create the type instance
when using. These aliased classes are JObject, JString, and
JException. Underlying all Java instances is the concept of a
jvalue.

jvalue

In the earlier design, wrappers, primitives and objects were all seperate
concepts. At the JNI layer these are unified by a common element called
jvalue. A jvalue is a union of all primitives with the jobject. The jobject
can represent anything derived from Java object including the pseudo class
jstring.

This has been replaced with a Java slot concept which holds an instance of
JPValue which holds a pointer to the C++ Java type wrapper and a Java
jvalue union. We will discuss this object further in the CPython section.

Bootstrapping

The most challenging part in working with the jpype module other than the
need to support both major Python versions with the same codebase is the
bootstrapping of resources. In order to get the system working, we must pass
the Python resources so the _jpype CPython module can acquire resources and then
construct the wrappers for java.lang.Object and java.lang.Class. The key
difficulty is that we need reflection to get methods from Java and those
are part of java.lang.Class, but class inherits from java.lang.Object.
Thus Object and the interfaces that Class inherits must all be created
blindly. The order of bootstrapping is controlled by specific sequence
of boot actions after the JVM is started in startJVM. The class instance
class_ may not be accessed until after all of the basic class, object,
and exception types have been loaded.

Factories

The key objects exposed to the user (JClass, JObject, and JArray) are each
factory meta classes. These classes serve as the gate keepers to creating the
meta classes or object instances. These factories inherit from the Java class meta
and have a class_ instance inserted after the the JVM is started. They do not
have exposed methods as they are shadows for action for actual Java types.

The user calls with the specified arguments to create a resource. The factory
calls the __new__ method when creating an instance of the derived object. And
the C++ wrapper calls the method with internally construct resource such as
_JClass or _JValue. Most of the internal calls currently create the
resource directly without calling the factories. The gateway for this is
PyJPValue_create which delegates the process to the corresponding specialized
type.

Style

One of the aspects of the jpype design is elegance of the factory patterns.
Rather than expose the user a large number of distinct concepts with different
names, the factories provide powerfull functionality with the same syntax for
related things. Boxing a primitive, casting to a specific type, and creating
a new object are all tied together in one factory, JObject. By also making that
factory an effective base class, we allow it to be used for issubtype and
isinstance.

This philosophy is further enhanced by silent customizers which integrate
Python functionality into the wrappers such that Java classes can be used
effectively with Python syntax. Consistent use and misuse of Python concepts
such as with for defining blocks such as try with resources and synchronized
hide the underlying complexity and give the feeling to the user that the
module is integrated completely as a solution such as jython.

When adding a new feature to the Python layer, consider carefully if the
feature needs to be exposed a new function or if it can be hidden in the
normal Python syntax.

JPype does somewhat break the Python naming conventions. Because Java and
Python have very different naming schemes, at least part of the kit would
have a different convention. To avoid having one portion break Python conventions
and another part conform, we choose to use Java notation consistently
throughout. Package names should be lower with underscores, classes should
camel case starting upper, functions and method should be camel case starting
lower. All private methods and classes start with a leading underscore
and are not exported.

Customizers

There was a major change in the way the customizers work between versions.
The previous system was undocumented and has now been removed, but as
someone may have used of it previously, we will contrast it with the
revised system so that the customizers can be converted.

In the previous system, a global list stored all customizers.
When a class was created, it went though the list and asked the class if
it matched that class name. If it matched, it altered the dict of members
to be created so when the dynamic class was finished it had the custome
behavior. This system wasn’t very scalable as each customizer added more
work to the class construction process.

The revised system works by storing a dictionary keyed to the class name.
Thus the customizer only applies to the specific class targeted to the
customizer. The customizer is specified using annotation of a prototype
class making methods automatically copy onto the class. However, sometimes
a customizer needs to be applied to an entire tree of classes such as
all classes that implement java.util.List. To handle this case,
the class creation system looks for a special method __java_init__
in the tree of base classes and calls it on the newly created class.
Most of the time the customization was the same simple pattern so we
added a sticky flag to build the initialization method directly.
This method can alter the class to make it add the new behavior. Note
the word alter. Where before we changed the member prior to creating the
class, here we are altering the class. Thus the customizer is expected
to monkey patch the existing class. There is only one pattern of
monkey patching that works on both Python 2 and Python 3 so be sure to
use the type.__setattr__ method of altering the class dictionary.

It is possible to apply customizers after the class has already been
created because we operate by monkey patching. But there is a limitation
that there can only be one __java_init__ method and thus two
customizers specifying a global behavior on the same class wrapper will
lead to unexpected behavior.

_jpype CPython module

Diving deeper into the onion, we have the Python front end. This is divided
into a number of distinct pieces. Each piece is found under native/python
and is named according to the piece it provides. For example,
PyJPModule is found in the file native/python/pyjp_module.cpp

Earlier versions of the module had all of the functionality in the
modules global space. This functionality is now split into a number
of classes. These classes each have a constructor that is used to create
an instance which will correspond to a Java resource such as class, array,
method, or value.

Jpype objects work with the inner layers by inheriting from a set of special
_jpype classes. This class hiarachy is mantained by the meta class
_jpype._JClass. The meta class does type hacking of the Python API
to insert a reserved memory slot for the JPValue structure. The meta
class is used to define the Java base classes:

	_JClass - Meta class for all Java types which maps to a java.lang.Class
extending Python type.

	_JArray - Base class for all Java array instances.

	_JObject - Base type of all Java object instances extending Python object.

	_JNumberLong - Base type for integer style types extending Python int.

	_JNumberFloat - Base type for float style types extending Python float.

	_JNumberChar - Special wrapper type for JChar and java.lang.Character
types extending Python float.

	_JException - Base type for exceptions extending Python Exception.

	_JValue - Generic capsule representing any Java type or instance.

These types are exposed to Python to implement Python functionality specific
to the behavior expected by the Python type. Under the hood these types are
largely ignored. Instead the internal calls for the Java slot to determine
how to handle the type. Therefore, internally often Python methods will be
applied to the “wrong” type as the requirement for the method can be satisfied
by any object with a Java slot rather than a specific type.

See the section regarding Java slots for details.

PyJPModule module

This is the front end for all the global functions required to support the
Python native portion. Most of the functions provided in the module are
for control and auditing.

Resources are created by setting attributes on the _jpype module
prior to calling startJVM. When the JVM is started each of th
required resources are copied from the module attribute lists to the
module internals. Setting the attributes after the JVM is started has
no effect. Resources are verified to exist when the JVM is started
and any missing resource are reported as an error.

_JClass class

The class wrappers have a metaclass _jpyep._JClass which serves as
the guardian to ensure the slot is attached, provide for the inheritance
checks, and control access to static fields and methods. The slot holds
a java.lang.Class instance but it does not have any of the methods normally
associate with a Java class instance exposed. A java.lang.Class instance
can be converted to a Jave class wrapper using JClass.

_JMethod class

This class acts as descriptor with a call method. As a descriptor accessing its
methods through the class will trigger its __get__ function, thus
getting ahold of it within Python is a bit tricky. The __get__ mathod
is used to bind the static unbound method to a particular object instance
so that we can call with the first argument as the this pointer.

It has some reflection and diagnostics methods that can be useful
it tracing down errors. The beans methods are there just to support
the old properties API.

The naming on this class is a bit deceptive. It does not correspond
to a single method but rather all the overloads with the same name.
When called it passes to with the arguments to the C++ layer where
it must be resolved to a specific overload.

This class is stored directly in the class wrappers.

_JField class

This class is a descriptor with __get__ and __set__ methods.
When called at the static class layer it operates on static fields. When
called on a Python object, it binds to the object making a this pointer.
If the field is static, it will continue to access the static field, otherwise,
it will provide access to the member field. This trickery allows both
static and member fields to wrap as one type.

This class is stored directly in the class wrappers.

_JArray class

Java arrays are extensions of the Java object type. It has both methods associated
with java.lang.Object and Python array functionality. Primitives have
specialized implementations to allow for the Python buffer API.

_JMonitor class

This class provides synchronized to JPype. Instances of this
class are created and held using with. It has two methods
__enter__ and __exit__ which hook into the Python RAII
system.

_JValue class

Java primitive and object instance derive from special Python derived
types. These each have the Python functionality to be exposed and
a Java slot. The most generic of these is _JValue which is simply
a capsule holding the Java C++ type wrapper and a Java jvalue union.
CPython methods for the PyJPValue apply to all CPython objects
that hold a Java slot.

Specific implementation exist for object, numbers, characters, and
exceptions. But fundimentally all are treated the same internally
and thus the CPython type is effectively erased outside of Python.

Unlike jvalue we hold the object type in the C++ JPValue
object. The class reference is used to determine how to match the arguments
to methods. The class may not correspond to the actual class of the
object. Using a class other than the actual class serves to allow
an object to be cast and thus treated like another type for the purposes
of overloading. This mechanism is what allows the JObject factory
to perform a typecast to make an object instance act like one of its
base classes..

Java Slots

THe key to achieving reasonable speed within CPython is the use of slots.
A slot is a dedicated memory location that can be accessed without consulting
the dictionary or bases of an object. CPython achieve this by reserving space
within the type structure and by using a set of bit flags so that it can avoid costly.
The reserved space in order by number and thus avoids the need to access the
dictionary while the bit flags serve to determine the type without traversing
the __mro__ structure. We had to implement the same effect which deriving
from a wide variety for Python types including type, object, int, long, and
Exception. Adding the slot directly to the type and objects base memory
does not work because these types all have different memory layouts. We could
have a table look up based on the type but because we must obey both the CPython
and the Java object hierarchy at the same time it cannot be done within the
memory layout of Python objects. Instead we have to think outside the box,
or rather outside the memory footprint of Python objects.

CPython faces the same conflict internally as inheritance often forces adding
a dictionary or weak reference list onto a variably size type sych as long.
For those cases it adds extract space to the basesize of the object and then
ignores that space for the purposes of checking inheritance. It pairs this
with an offset slot that allows for location of the dynamic placed slots.
We cannot replicate this in the same way because the CPython interals are
all specialize static members and there is no provision for introducting
user defined dynamic slots.

Therefore, instead we will add extra memory outside the view of Python
objects though the use of a custom allocator. We intercept the call to
create an object allocation and then call the regular Python allocators
with the extra memory added to the request. As our extrs slot has
resource in the form of Java global references associated with it, we
must deallocate those resource regardless of the type that has been
extended. We perform this task by creating a custom finalize method to
serve as the destructor. Thus a Java slot requires
overriding each of tp_alloc, tp_free and tp_finalize. The
class meta gatekeeper creates each type and verifies that the required
hooks are all in place. If the user tries to bypass this it should
produce an error.

In place of Python bit flags to check for the presence of a Java slot
we instead test the slot table to see if our hooks are in place.
We can test if the slot is present by looking to see if both tp_alloc and
tp_finalize point to our Java slot handlers. This means we are still
effectively a slot as we can test and access with O(1).

Accessing the slot requires testing if the slot exists for the object,
then computing the sice of the object using the basesize and itemsize
associate with the type and then offsetting the Python object pointer
appropriately. The overall cost is O(1), though is slightly more
heavy that directly accesssing an offset.

CPython API layer

To make creation of the C++ layer easier a thin wrapper over the CPython API was
developed. This layer provided for handling the CPython referencing using a
smart pointer, defines the exception handling for Python, and provides resource
hooks for duck typing of the _jpype classes.

This layer is located with the rest of the Python codes in native/python, but
has the prefix JPPy for its classes. As the bridge between Python and C++,
these support classes appear in both the _jpype CPython module and the C++
JNI layer.

Exception handling

A key piece of the jpype interaction is the transfer of exceptions from
Java to Python. To accomplish this Python method that can result in a call to
Java must have a try block around the contents of the function.

We use a routine pattern of code to interact with Java to achieve this:

PyObject* dosomething(PyObject* self, PyObject* args)
{
 // Tell the logger where we are
 JP_PY_TRY("dosomething");

 // Make sure there is a jvm to receive the call.
 ASSERT_JVM_RUNNING("dosomething");

 // Make a resource to capture any Java local references
 JPJavaFrame frame;

 // Call our Java methods
 ...

 // Return control to Python
 return obj.keep();

 // Use the standard catch to transfer any exceptions back
 // to Python
 JP_PY_CATCH(NULL);
}

All entry points from Python into _jpype should be guarded with this pattern.

There are exceptions to this pattern such as removing the logging, operating on
a call that does not need the JVM running, or operating where the frame is
already supported by the method being called.

Python referencing

One of the most miserable aspects of programming with CPython is the relative
inconsistancy of referencing. Each method in Python may use a Python object or steal
it, or it may return a borrowed reference or give a fresh reference. Similar
command such as getting an element from a list and getting an element from a tuple
can have different rules. This was a constant source of bugs requiring
consultation of the Python manual for every line of code. Thus we wrapped all of the
Python calls we were required to work with in jp_pythontypes.

Included in this wrapper is a Python reference counter called JPPyObject.
Whenever an object is returned from Python it is immediately placed in smart
pointer JPPyObject with the policy that it was created with such as
use_, borrowed_, claim_ or call_.

	use_

	This policy means that the reference counter needs to be incremented and the start
and the end. We must reference it because if we don’t and some Python call
destroys the refernce out from under us, the system may crash and burn.

	borrowed_

	This policy means we were to be give a borrowed reference that we are expected
to reference and unreference when complete, but the command that returned it
can fail. Thus before reference it, the system must check if an error has
occurred. If there is an error, it is promoted to an exception.

	claim_

	This policy is used when we are given a new object with is already referenced
for us. Thus we are to steal the reference for the duration of our use and
then dereference when we are done to keep it from leaking.

	call_

	This policy both steals the reference and verifies there were no errors
prior to continuing. Errors are promoted to exceptions when this reference
is created.

If we need to pass an object which is held in a smart pointer to Python
which requires a reference, we call keep on the reference which transfers
control to a PyObject* and prevents the pointer from removing the reference.
As the object handle is leaving our control keep should only be called the
return statement. The smart pointer is not used on method passing in which
the parent explicitly holds a reference to the Python object. As all tuples
passed as arguments operate like this, that means much of the API accepts
bare PyObject* as arguments. It is the job of the caller to hold the
reference for its scope.

On CPython extensions

CPython is somewhat of a nightmare to program in. It is not that they did not
try to document the API, but it is darn complex. The problems extend well
beyond the reference counting system that we have worked around. In
particular, the object model though well developed is very complex, often to
get it to work you must follow letter for letter the example on the CPython
user guide, and even then it may all go into the ditch.

The key problem is that there are a lot of very bad examples of how to write
CPython extension modules out there. Often the these examples bypass the
appropriate macro and just call the field, or skip the virtual table and try to
call the Python method directly. It is true that these things do not break
there example, but they are conditioned on these methods they are calling
directly to be the right one for the job, but depends a lot on what the
behavior of the object is supposed to be. Get it wrong and you get really nasty
segfault.

CPython itself may be partly responsible for some of these problems. They
generally seem to trust the user and thus don’t verify if the call makes sense.
It is true that it will cost a little speed to be aggressive about checking the
type flags and the allocator match, but not checking when the error happens,
means that it fails far from the original problem source. I would hope that we
have moved beyond the philosophy that the user should just to whatever they
want so it runs as fast as possible, but that never appears to be the case. Of
course, I am just opining from the outside of the tent and I am sure the issues
are much more complicated it appears superficially. Then again if I can manage
to provide a safe workspace while juggling the issues of multiple virtual
machines, I am free to have opinions on the value of trading performance and
safety.

In short when working on the extension code, make sure you do everything by the
book, and check that book twice. Always go through the types virtual table and
use the propery macros to access the resources. Miss one line in some complex
pattern even once and you are in for a world of hurt. There are very few guard
rails in the CPython code.

C++ JNI layer

The C++ layer has a number of tasks. It is used to load thunks, call JNI
methods, provide reflection of classes, determine if a conversion is possible,
perform conversion, match arguments to overloads, and convert return values
back to Java.

Memory management

Java provides built in memory management for controlling the lifespan of
Java objects that are passed through JNI. When a Java object is created
or returned from the JVM it returns a handle to object with a reference
counter. To manage the lifespan of this reference counter a local frame
is created. For the duration of this frame all local references will
continue to exist. To extend the lifespan either a new global reference
to the object needs to be created, or the object needs to be kept. When
the local frame is destroyed all local references are destroyed with
the exception of an optional specified local return reference.

We have wrapped the Java reference system with the wrapper JPLocalFrame.
This wrapper has three functions. It acts as a RAII (Resource acquisition
is initialization) for the local frame. Further, as creating a local
frame requires creating a Java env reference and all JNI calls require
access to the env, the local frame acts as the front end to call all
JNI calls. Finally as getting ahold of the env requires that the
thread be attached to Java, it also serves to automatically attach
threads to the JVM. As accessing an unbound thread will cause a segmentation
fault in JNI, we are now safe from any threads created from within
Python even those created outside our knowledge. (I am looking at
you spyder)

Using this pattern makes the JPype core safe by design. Forcing JNI
calles to be called using the frame ensures:

	Every local reference is destroyed.

	Every thread is properly attached before JNI is used.

	The pattern of keep only one local reference is obeyed.

To use a local frame, use the pattern shown in this example.

jobject doSomeThing(std::string args)
{
 // Create a frame at the top of the scope
 JPLocalFrame frame;

 // Do the required work
 jobject obj =frame.CallObjectMethodA(globalObj, methodRef, params);

 // Tell the frame to return the reference to the outer scope.
 // once keep is called the frame is destroyed and any
 // call will fail.
 return frame.keep(obj);
}

Note that the value of the object returned and the object in the function
will not be the same. The returned reference is owned by the enclosing
local frame and points to the same object. But as its lifespan belongs
to the outer frame, its location in memory is different. You are allowed
to keep a reference that was global or was passed in, in either of
those case, the outer scope will get a new local reference that points
to the same object. Thus you don’t need to track the origin of the object.

The changing of the value while pointing is another common problem.
A routine error is to get a local reference, call NewGlobalRef
and then keeping the local reference rather than the shiny new
global reference it made. This is not like the Python reference system
where you have the object that you can ref and unref. Thus make sure
you always store only the global reference.

jobject global;

// we are getting a reference, may be local, may be global.
// either way it is borrowed and it doesn't belong to us.
void elseWhere(jvalue value)
{
 JPLocalFrame frame;

 // Bunch of code leading us to decide we need to
 // hold the resource longer.
 if (cond)
 {
 // okay we need to keep this reference, so make a
 // new global reference to it.
 global = frame.NewGlobalRef(value.l);
 }
}

But don’t mistake this as an invitation to make global references everywhere.
Global reference are global, thus will hold the member until the reference is
destroyed. C++ exceptions can lead to missing the unreference, thus global
references should only happen when you are placing the Java object into a class
member variable or a global variable.

To help manage global references, we have JPRef<> which holds a global
reference for the duration of the C++ lifespace. This is the base class for
each of the global reference types we use.

typedef JPRef<jclass> JPClassRef;
typedef JPRef<jobject> JPObjectRef;
typedef JPRef<jarray> JPArrayRef;
typedef JPRef<jthrowable> JPThrowableRef;

For functions that expect the outer scope to already have created a frame
for this context, we use the pattern of extending the outer scope rather
than creating a new one.

jobject doSomeThing(JPLocalFrame& frame, std::string args)
{
 // Do the required work
 jobject obj = frame.CallObjectMethodA(globalObj, methodRef, params);

 // We must not call keep here or we will terminate
 // a frame we do not own.
 return obj;
}

Although the system we have set up is “safe by design”, there are things that
can go wrong is misused. If the caller fails to create a frame prior to
calling a function that returns a local reference, the reference will go into
the program scoped local references and thus leak. Thus, it is usually best to
force the user to make a scope with the frame extension pattern. Second, if any
JNI references that are not kept or converted to global, it becomes invalid.
Further, since JNI recycles the reference pointer fairly quickly, it most
likely will be pointed to another object whose type may not be expected. Thus,
best case is using the stale reference will crash and burn. Worse case, the
reference will be a live reference to another object and it will produce an
error which seems completely irrelevant to anything that was being called.
Horrible case, the live object does not object to bad call and it all silently
proceeds down the road another two miles before coming to flaming death.

Moral of the story, always create a local frame even if you are handling a global
reference. If passed or returned a reference of any kind, it is a borrowed reference
belonging to the caller or being held by the current local frame. Thus it must
be treated accordingly. If you have to hold a global use the appropraite JPRef
class to ensure it is exception and dtor safe. For further information
read native/common/jp_javaframe.h.

Type wrappers

Each Java type has a C++ wrapper class. These classes provide a number of methods.
Primitives each have their own unit type wrapper. Object, arrays, and class
instances share a C++ wrapper type. Special instances are used for
java.lang.Object and java.lang.Class. The type wrapper are named for the class
they wrap such as JPIntType.

Type conversion

For type conversion, a C++ class wrapper provides four methods.

	canConvertToJava

	This method must consult the supplied Python object to determine the type
and then make a determination of whether a conversion is possible.
It reports none_ if there is no possible conversion, explicit_ if the
conversion is only acceptable if forced such as returning from a proxy,
implicit_ if the conversion is possible and acceptable as part of an
method call, or exact_ if this type converts without ambiguity. It is excepted
to check for something that is already a Java resource of the correct type
such as JPValue, or something this is implementing the behavior as an interface
in the form of a JPProxy.

	convertToJava

	This method consults the type and produces a conversion. The order of the match
should be identical to the canConvertToJava. It should also handle values and
proxies.

	convertToPythonObject

	This method takes a jvalue union and converts it to the corresponding
Python wrapper instance.

	getValueFromObject

	This converts a Java object into a JPValue corresponding. This unboxes
primitives.

Array conversion

In addition to converting single objects, the type rewrappers also serve as the
gateway to working with arrays of the specified type. Five methods are used to
work with arrays: newArrayInstance, getArrayRange, setArrayRange,
getArrayItem, and setArrayItem.

Invocation and Fields

To convert a return type produced from a Java call, each type needs to be
able to invoke a method with that return type. This corresponses the underlying
JNI design. The methods invoke and invokeStatic are used for this purpose.
Similarly accessing fields requires type conversion using the methods
getField and setField.

Instance versus Type wrappers

Instances of individual Java classes are made from JPClass. However, two
special sets of conversion rules are required. These are in the form
of specializations JPObjectBaseClass and JPClassBaseClass corresponding
to java.lang.Object and java.lang.Class.

Support classes

In addition to the type wrappers, there are several support classes. These are:

	JPTypeManager

	The typemanager serves as a dict for all type wrappers created during the
operation.

	JPReferenceQueue

	Lifetime manager for Java and Python objects.

	JPProxy

	Proxies implement a Java interface in Python.

	JPClassLoader

	Loader for Java thunks.

	JPEncoding

	Decodes and encodes Java UTF strings.

JPTypeManager

C++ typewrappers are created as needed. Instance of each of the
primitives along with java.lang.Object and java.lang.Class are preloaded.
Additional instances are created as requested for individual Java classes.
Currently this is backed by a C++ map of string to class wrappers.

The typemanager provides a number lookup methods.

// Call from within Python
JPClass* JPTypeManager::findClass(const string& name)

// Call from a defined Java class
JPClass* JPTypeManager::findClass(jclass cls)

// Call used when returning an object from Java
JPClass* JPTypeManager::findClassForObject(jobject obj)

JPReferenceQueue

When a Python object is presented to Java as opposed to a Java object, the
lifespan of the Python object must be extended to match the Java wrapper.
The reference queue adds a reference to the Python object that will be
removed by the Java layer when the garbage collection deletes the wrapper.
This code is almost entirely in the Java library, thus only the portion
to support Java native methods appears in the C++ layer.

Once started the reference queue is mostly transparent. registerRef is used
to bind a Python object live span to a Java object.

void JPReferenceQueue::registerRef(jobject obj, PyObject* hostRef)

JPProxy

In order to call Python functions from within Java, a Java proxy is used. The
majority of the code is in Java. The C++ code holds the Java native portion.
The native implement of the proxy call is the only place in with the pattern
for reflecting Python exceptions back into Java appears.

As all proxies are ties to Python references, this code is strongly tied to
the reference queue.

JPClassLoader

This code is responsible for loading the Java class thunks. As it is difficult
to ensure we can access a Java jar from within Python, all Java native code
is stored in a binary thunk compiled into the C++ layer as a header. The
class loader provides a way to load this embedded jar first by bootstrapping
a custom Java classloader and then using that classloader to load the internal
jar.

The classloader is mostly transparent. It provides one method called findClass
which loads a class from the internal jar.

jclass JPClassLoader::findClass(string name)

JPEncoding

Java concept of UTF is pretty much out of sync with the rest of the world. Java
used 16 bits for its native characters. But this was inadequate for all of the
unicode characters, thus longer unicode character had to be encoded in the 16
bit space. Rather the directly providing methods to convert to a standard
encoding such as UTF8, Java used UTF16 encoded in 8 bits which they dub
Modified-UTF8. JPEncoding deals with converting this unusual encoding into
something that Python can understand.

The key method in this module is transcribe with signature

std::string transcribe(const char* in, size_t len,
 const JPEncoding& sourceEncoding,
 const JPEncoding& targetEncoding)

There are two encodings provided, JPEncodingUTF8 and JPEncodingJavaUTF8.
By selecting the source and traget encoding transcribe can convert to or
from Java to Python encoding.

Incidentally that same modified UTF coding is used in storing symbols in the
class files. It seems like a really poor design choice given they have to document
this modified UTF in multiple places. As far as I can tell the internal
converter only appears on java.io.DataInput and java.io.DataOutput.

Java native code

At the lowest level of the onion is the native Java layer. Although this layer
is most remote from Python, ironically it is the easiest layer to communicate
with. As the point of jpype is to communicate with Java, it is possible to
directly communicate with the jpype Java internals. These can be imported from
the package org.jpype. The code for the Java layer is located in
native/java. It is compiled into a jar in the build directory and then
converted to a C++ header to be compiled into the _jpype module.

The Java layer currently houses the reference queue, a classloader which can
load a Java class from a bytestream source, the proxy code for implementing
Java interfaces, and a memory compiler module which allows Python to directly
create a class from a string.

Tracing

Because the relations between the layers can be daunting especially when things
go wrong. The CPython and C++ layer have a built in logger. This logger
must be enabled with a compiler switch to activate. To active the logger, touch
one of the cpp files in the native directory to mark the build as dirty, then
compile the jpype module with:

python setup.py --enable-tracing devel

Once built run a short test program that demonstrates the problem and capture the
output of the terminal to a file. This should allow the developer to isolate
the fault to specific location where it failed.

To use the logger in a function start the JP_TRACE_IN(function_name) which will
open a try catch block.

The JPype tracer can be augmented with the Python tracing module to give
a very good picture of both JPype and Python states at the time of the crash.
To use the Python tracing, start Python with…

python -m trace --trace myscript.py

Debugging issues

If the tracing function proves inadequate to identify a problem, we often need
to turn to a general purpose tool like gdb or valgrind. The JPype core is not
easy to debug. Python can be difficult to properly monitor especially with
tools like valgrind due to its memory handling. Java is also challenging to
debug. Put them together and you have the mother of all debugging issues. There
are a number of complicating factors. Let us start with how to debug with gdb.

Gdb runs into two major issues, both tied to the signal handler.
First, Java installs its own signal handlers that take over the entire process
when a segfault occurs. This tends to cause very poor segfault stacktraces
when examining a core file, which often is corrupt after the first user frame.
Second, Java installs its signal handlers in such as way that attempting to run
under a debugger like gdb will often immediately crash preventing one from
catching the segfault before Java catches it. This makes for a catch 22,
you can’t capture a meaningful non-interactively produced core file, and you
can’t get an interactive session to work.

Fortunately there are solutions to the interactive session issue. By disabling
the SIGSEGV handler, we can get past the initial failure and also we can catch
the stack before it is altered by the JVM.

gdb -ex 'handle SIGSEGV nostop noprint pass' python

Thus far I have not found any good solutions to prevent the JVM from altering
the stack frames when dumping the core. Thus interactive debugging appears
to be the best option.

There are additional issues that one should be aware of. Open-JDK 1.8 has had a
number of problems with the debugger. Starting JPype under gdb may trigger, may
trigger the following error.

gdb.error: No type named nmethod.

There are supposed to be fixes for this problem, but none worked for me.
Upgrading to Open-JDK 9 appears to fix the problem.

Another complexity with debugging memory problems is that Python tends to
hide the problem with its allocation pools. Rather than allocating memory
when a new object is request, it will often recycle and existing object
which was collect earlier. The result is that an object which turns out is
still live becomes recycled as a new object with a new type. Thus suddenly
a method which was expected to produce some result instead vectors into
the new type table, which may or may not send us into segfault land
depending on whether the old and new objects have similar memory layouts.

This can be partially overcome by forcing Python to use a different memory
allocation scheme. This can avoid the recycling which means we are more likely
to catch the error, but at the same time means we will be excuting different
code paths so we may not reach a similar state. If the core dump is vectoring
off into code that just does not make sense it is likely caused by the memory
pools. Starting Python 3, it is possible to select the memory allocation policy
through an enviroment variable. See the PYTHONMALLOC setting for details.

Future directions

Although the majority of the code has been reworked for JPype 0.7, there is still
further work to be done. Almost all Java constructs can be exercised from within
Python, but Java and Python are not static. Thus, we are working on further
improvements to the jpype core focusing on making the package faster, more
efficient, and easier to maintain. This section will discuss a few of these options.

Java based code is much easier to debug as it is possible to swap the thunk code
with an external jar. Further, Java has much easier management of resources.
Thus pushing a portion of the C++ layer into the Java layer could further reduce
the size of the code base. In particular, deciding the order of search for
method overloads in C++ attempts to reconstruct the Java overload rules. But these
same rules are already available in Java. Further, the C++ layer is designed
to make many frequent small calls to Java methods. This is not the preferred
method to operate in JNI. It is better to have specialized code in Java which
preforms large tasks such as collecting all of the fields needed for a type
wrapper and passing it back in a single call, rather than call twenty different
general purpose methods. This would also vastly reduce the number of jmethods
that need to be bound in the C++ layer.

The world of JVMs is currently in flux. Jpype needs to be able to support
other JVMs. In theory, so long a JVM provides a working JNI layer, there
is no reason the jpype can’t support it. But we need loading routines for
these JVMs to be developed if there are differences in getting the JVM
launched.

There is a project page on github shows what is being developed for the
next release. Series 0.6 was usable, but early versions had notable issues
with threading and internal memory management concepts had to be redone for
stability. Series 0.7 is the first verion after rewrite for
simplication and hardening. I consider 0.7 to be at the level of production
quality code suitable for most usage though still missing some needed
features. Series 0.8 will deal with higher levels of Python/Java integration such as Java
class extension and pickle support. Series 0.9 will be dedicated to any
additional hardening and edge cases in the core code as we should have complete
integration. Assuming everything is completed, we will one day become a
real boy and have a 1.0 release.

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jpype	

 	
 	
 jpype.beans	

 	
 	
 jpype.imports	

 	
 	
 jpype.pickle	

 	
 	
 jpype.types	

Index

 _
 | A
 | D
 | G
 | I
 | J
 | R
 | S

_

 	
 	_JCloseable (class in jpype._jio)

 	_JCollection (class in jpype._jcollection)

 	_JEnumeration (class in jpype._jcollection)

 	
 	_JIterable (class in jpype._jcollection)

 	_JIterator (class in jpype._jcollection)

 	_JList (class in jpype._jcollection)

 	_JMap (class in jpype._jcollection)

A

 	
 	attachThreadToJVM() (in module jpype)

D

 	
 	detachThreadFromJVM() (in module jpype)

G

 	
 	getClassPath() (in module jpype)

 	
 	getDefaultJVMPath() (in module jpype)

I

 	
 	isThreadAttachedToJVM() (in module jpype)

J

 	
 	JArray (class in jpype)

 	JClass (class in jpype)

 	JException (in module jpype)

 	JImportCustomizer (class in jpype.imports)

 	JObject (class in jpype)

 	JPackage (class in jpype)

 	JPickler (class in jpype.pickle)

 	
 	JProxy (in module jpype)

 	jpype.beans (module)

 	jpype.imports (module)

 	jpype.pickle (module)

 	jpype.types (module)

 	JString (class in jpype)

 	JUnpickler (class in jpype.pickle)

R

 	
 	registerDomain() (in module jpype.imports)

 	
 	registerImportCustomizer() (in module jpype.imports)

S

 	
 	shutdownJVM() (in module jpype)

 	
 	startJVM() (in module jpype)

 	synchronized() (in module jpype)

Buffers and NumPy removal

NumPy was used primarily for supplying Python buffers on slicing. Numpy has
always been problematic for JPype. As an optional extra is may or may not be
built into the distribution, but if it is compiled in it is required.
Therefore, is itn’t really on “extra”. Therefore, removing it would make
distribution for binary versions of JPype much easier.

NumPy returns on slicing is but one part of the three uses of Python buffers in
JPype. Thus to properly remove it we need to rework to remove it we need to
review all three of the paths. These paths are

	Conversion of Python buffers to Java arrays on setArrayRange.

	Conversion of Java arrays to slices (and then from slices to buffers so that
they can be transferred to NumPy.)

	Connecting bytearray to Java direct byte buffers.

We reviewed and revised each of the paths accordingly.

On conversion of Python buffers, the implementation was dated from Python 2.6
era where there was no formal support for buffers. Thus the buffer
implementation never consulted the buffer type to see what type of object was
being transferred nor how the memory was oriented. This entire section had to
be replaced and was given the same conversion rules as NumPy. Any conversion is
possible (including lossy ones like float to bool). The rules to trigger the
conversion is by slicing just as with NumPy. By replicating the rules of NumPy
we hide the fact that NumPy is no longer used and increase typesafety. There
was a number of cases where in the past it would reinterpret cast the memory
that will now function properly. The old behavior was a useless side effect of
the implementation and was unstable with machine architecture so not likely used
be a user.

The getArrayRange portion has to be split into two pieces. Under the previous
implementation the type of the return changes from Python list to NumPy array
depending on the compile option. Thus the test suite tested different
behaviors for each. In removing NumPy we replace the Java array slice return
with a Java array. Thus the type is always consistent. The Java array that is
returned is still backed by the same array as before and has the start, end, and
step set appropriately. This does create one change in behavior as the slice
now has left assignment (just like NumPy) and before it was a copy. It is
difficult exercise this but to do so we have to copy a slice to a new variable
then use a second array dereference to assign an element. Because we converted
to either list or NumPy, the second dereference could not affect the original.

There is no way to avoid this behavior change without adding a large transaction
cost. Which is why NumPy has the exact same behavior as our replacement
implementation. We could in principle make the slice read only rather than
allowing for double slicing, but that would also be an API change.

There is one other consequence of producing a view of the original having to do
with passing back to Java. As Java does not recognize the concept of an array
view we must force it back to a Java type at the JNI level. We will force copy
the array slice into a Java array at that time. Thus replicates the same
functionality. This induces one special edge case as java.lang.Object and
java.lang.Serializable which are both implemented by arrays must be aware of
the slice copy.

Before we trigger the conversion to NumPy or list by calling the slice without
limits operator [:] on the array. Under the new implementation this is
effectively a no-op. Thus we haven’t broken or forced any changes in the API.

The third case of direct byte buffers also revealed problems. Again the type of
the buffer was not being check resulting in weird reinterpret cast like
behaviors. Additionally, the memory buffer interface was making a very bad
assumption about the referencing of the buffer by assuming that referencing the
object that holds the buffer is the same as referencing the buffer itself. It
was working only because the buffer was being leaked entirely and was likely
possible to break under situations as the leaked buffer essentially locked the
object forever.

To implement all of this properly unfortunately requires making the Python
wrapper of Java arrays a direct type. This is possible in JPype 0.8 series
where we converted all classes to CPython roots, thus our only choice is to
backport the JPype speed patch into JPype 0.7.

API change summary

	The type of a slice is no longer polymorphic but is always a Java array now.

	The unbounded slice is now a no op.

	Buffer types now trigger conversion routines rather than reinterpret casting
the memory.

	Direct buffers now guard the memory layout such that they work only with
mutable bytearray like types.

	Assignment of elements though double slicing of an array now affects the
original rather than just doing nothing effective like before.

JPype Speed Patch

Speed has always been an issue for JPype. While the interface of JPype is great
the underlying implementation is wanting. Part of this was choices made early
in the development that favors ease of implementation over speed. This forced a
very thin interface using Python capsules and then the majority of the code in
a pure Python module.

The speed issue stems from two main paths. The first being the method
resolution phase in which we need to consider each method overload argument by
argument which means many queries applied to each object. The second is the
object construction penality when we return a Java object back to Python. The
object bottleneck is both on the cost of the wrappers we produce, but
additionaly all of the objects that are constructed to communicate with a Python
function. Every int, list, string and tuple we use in the process is another
object to construct. Thus returning one object triggers dozens of object to be
constructed.

We have addressed these problems in five ways

	Improve resolution of methods by removing the two phase approach to resolving
a type match cutting the resolution time in half.

	Caching the types in C so that they don’t have to go back to Python to execute a
method to check the Python cache and construct if necessary.

	Converting all of the base types to CPython so that they can directly access
the C++ guts without going back through entry points.

	Remove all Python new and init method from the Java class tree so that we
don’t leave C during the construction phase. Thus avoiding having to
construct Python objects for each argument used during object construction.

	Adding a Java slot to so that we can directly access Java resources both
increasing the speed of the queries and saving us an additional object
during construction.

All of these are being implemented for JPype 0.8 series. For now we are
backporting the last four to the JPype 0.7 series. The first is not possible to
backport as it requires larger structural changes.

Lets briefly discuss each of the items

Method resolution

During method resolution the previous implementation had a two phase approach.
First is tried to match the arguments to the Java types in canConvertToJava. In
this each Java argument had to walk through each possible type conversion and
decide if the conversion is possible. Once the we have the method overload
resovled we then perform the conversion by calling convertToJava. That would
then walk through each possible type conversion to find the right one and apply
it. Thus we did tha work twice.

To prevent this from happening we need to reserve memory for each argument we
are trying to convert. When we walk through the list and find a conversion
rather than just returning true, we place a pointer to the conversion routine.
That way when we call convertToJava we don’t have to walk the list a second time
but instead go straight to the pointer to get the routine to execute.

This change has two additional consequences. First the primary source of bugs in
the type conversion was a mismatch between canConvertToJava and convertToJava
thus we are removing that problem entirely. The second and more important to
the user is that the type system is now open. By installing a routine we can
now add a user rule. Therefore if we need java.sql.TimeStamp to accept a
Python time object we just need to add this to the type conversion table at the
Python level. This is implemented in the ClassHints patch. About half of our
customizer code was to try to achieve this on a per method level. Thus this
elimiates a lot of our current Python customizer code. The remaining customizer
code is to rename Java methods to Python methods and that will remain.

Caching of Python wrappers

In the previous implementation there was a text keyed dictionary that was
consulted to get type wrappers. To access it C++ called to a Python function
that decided when to return a cached type and when to create a new one. This
meant dozens of object constructed just to find the wrapper. To solve this we
simply move the cache and add it to the JClass directly. We have to back
reference the Python class so it can’t go away while the JVM is running.

There is one section of code that also uses the wrapper dict in the customizers
which needs to decided does a wrapper already exist for the customizer. We have
replaced these calls with methods on the module.

Conversion of the Base classes

JPype has a number of base classes (object, primitive, exception, string, array)
which hold the methods for the class. If they are implemented as pure Python
than every access from C++ to these elements needs to create objects accordingly
when then are passed back through the module entry points to get back to C++.

We can avoid this by implementing each of these in CPython first at the module
layer and then extending them in the exposed module so that they have the same
outward appearance as before.

We made one refinement during the conversion by implementing all of the CPython
classes using the Heep type API which has the distinct advantage that unlike
static types, it can be changed at runtime. Thus from Python we can add
behavior to the heap types simply with by using type.__setattr_. This was
a bit of a challenge as the documentation on heap types is much more sparse than
for static types. However, after going through the process I would recommend
that all new CPython modules should use heap types rather than static as API is
much better and the result much more flexable and stable. The only downside
being the memory footprint increases from 400 bytes to 900 bytes. There are a
few rough spots in the heap type API in that certain actions like setting the
Buffer have to be added to the type after creation, but otherwise it is a big
improvement. Now if all of the documentation would just drop the old static API
in favor of heap types it would be great.

Constructor simplifications

In order to benefit from moving all of the base classes to C, we have to make
sure that derived classes do not transfer control back to Python. Currently
this happens due to the factory nature of our classes. The entry point for
JObject is shared between the construction of objects from Python and a return
from Java. Thus we have to either separate the factory behavior by pushing
those types out of the type tree or pushing the factory behavior into the C
layer.

We have chosen to split the factories and use overrides of the type system in
the meta class to apply isinstance and issubtype behavior. We can further
restrict the type system if we need to by adding verifications that the
__new__ and __init__ methods must point the original base class
implementations if need. Howver, we have not taken this step as of yet.
The split approach effectively removes these heavy elements from type creation.
The concequence of this is that means all of the rest of logic needs to be in
CPython implementation. These can be rather cumbersome at times.

It is always a slippery slope when pushing code from Python back to CPython.
Some thing are needed as they are on the critical path while others are
called only occasionally and thus represent no cost to leave in Python. On the
other hand some things are easy to implement in CPython because the have
direct access rather than having to go through a module entry point. We have
gone with the approach that all critical path and all code the eliminates the
need for an entry point should be pushed back to C.

Java Slots

In order to get any reasonable speed with Python, the majority of the code
needs to be in C. But additionally there needs to be the use of slots which are
hard coded locations to search for a particular piece of information. This
presents a challenge when wrapping Java as we need a slot for the Java value
structure which must appear on Python object, long, float, exception, and type.
These different types each have their own memory layout and thus we can’t just
add the slot at the base as once something is added to the base object it can
no longer be used in multiple inheritance. Thus we require a different
approach.

Looking through the CPython source, we find they have the same quandary with
respect to __dict__ and __weakref__ slots. Those slots do not appear one
the base object but get added along the way. The method they use is to add
those slots to the back of the object be increasing the basesize of the object
and then referencing them with two offset slots in the type object. If the type
is variable length the slot offset are negative thus referencing from the end of
the object, or positive if the object is a fixed layout.

Thus we tried a few formulations to see what would work best.

Broken tree approach

The problem with just directly adding the slots in the tree is that the Java
inheritance tree forces the order of the Python tree we have to apply. If we
add a slot to java.lang.Object we have to keep the slot on
java.lang.Throwable but that is not possible because Throwable requires it to
be derived from Python Exception. Thus if we are going to add a slot to the
base we would have to break the tree into pieces on the Python side. This is
possible due to Python inheritance hacking with some effort.

But this approach had significant down sides. When we go to access the slot
we have to first figure out if the slot is present and if not then fall back to
looking in the dictionary. But one of the most common cases is one in which the
item has no slot at all. Thus if we have to both look for the slot and then hit
the dictionary, this is worse than just going to the dictionary in the first
place. Thus this defeats the point of a slot in many cases.

Python dict approach

We attempted the same trick by increasing the basesize to account for our extra
slot. This leaves to difficulties. First, the slot has no offset so we need to
find it each time by implying its location. Second, the extra objects have to
be “invisible” during the type construction phase, or Python will conclude the
memory layout of the object is in conflict. We can fool the type system by
subtracting the extra space from the type during the declaration phase and then
adding it back after the base types are created.

This approach failed because the “invisible” part is checked each and every time
a new type is added to the system. Thus every dynamic type we add checks the
base types for consistency and at some point the type system will find the
inconsistency and cause a failure. Therefore, this system can never be robust.

Dict and weakref appear to be very special cases within the Python system and as
there is no general facility to replicate them working within the system does
not appear to be viable.

Memory hacking approach

The last system we attempted to mess with the memory layout of the object during
the creation phase to append our memory after Pythons. To do this we need to
override the memory allocator to allocate the requested memory plus our extra.
We can then access this appended memory by computing the correct size of the
object and thus our slot is on the end.

We can test if the slot is present by looking to see if both tp_alloc and
tp_finalize point to our Java slot handlers. This means we are still
effectively a slot as we can test and access with O(1).

The downside of this approach is there are certain cases in which the type of an
object can be changed during the destruction phase which means that our slot can
point to the wrong space if the basesize is changed out from under us. To guard
against this we need to close our type system by imposing a ClassMeta which
closes off mixin types that do not inherit from one of the special case base
classes we have defined.

The API implications should be small. There was never a functional case where
extending a Java object within Python actually made sense as the Python portion
is just lost when passed to Java and unlike Proxies there is no way to retrieve
it. Further the extending a Java object within Python does not bind the
lifespan of the objects so any code that used this is likely already buggy. We
will properly support this option with @JExtends at a latter point.

	With this limitiation in mind, this appears to be the best implementation

	
	It adds the slot to all of the required types.

	The slot is immediately accessable using just two fields (basesize, itemsize)

	The slot can be tested for easily (check tp_alloc, tp_finalize)

	It closes the type system by forcing a meta class that guards against
inappropraite class constuction.

We could in principle add the slot to the “front” of the Python object but that
could cause additional issues as we would require also require overriding the
deallocation slot to disappear our memory from the free. The Python GC module
has already reserved the memory in the front of the object so the back is
the next best option.

Speed patch implications

Other than improving the speed, the speed patch has a lot of below the hood
changes. So long as the user was not accessing private members there is no API
change, but everything below that is gone. All private symbols like
__javaclass__ and __javavalue__ as well as all exposed private members
vanish from the interface. There is no longer a distinction between class
wrappers and java.lang.Class instances for purposes of the casting system.
The wrapper is an extension of a Python type and has the class methods and
fields, and the instance is an extension of a Python object without these.
Both hold Java slots to the same object. Therefore a lot of complexity of the
private portions is effectively removed from the user view. Every path now has
the same resolution, check the Java slot first and if not assume it is Python.

Two private methods now appear on the wrapper (though I may be able to hide them
from the user view.) These are the test entry points _canConvertToJava and
_convertToJava. Thus the speed patch should be transparent all user code that
does not access our private members. That said some code like the Database
wrappers using JPype have roots in some code that did make access to the private
tables. I have sent corrections when we upgraded to 0.7 series thus making them
conforming enough not to touch the private members. But that does mean some
modules may be making such accesses out in the wild.

The good new is after the speed patch pretty much everything that is supposed to
be under the hood is now out of the reach of the user. Thus the chance of
future API breakage is much lower.

Below the hood changes

	We have tried to prevent backend changes from reaching the API, though this
is not always entirely the case. The majority of the cases not already noted
appear to be in the range of implementation side effects. The old
implementation had bugs that create undefined behaviors like reinterpet
casting buffers and the like. It is not possible to both fix the bugs in the
backend and make preserve buggy behavours on the front end. We have limited
our changes to only those for which we can see no desirable use existing.
Calling a list slice assignment on a float from a numpy array of ints and
getting a pile of gibberish was as far as we can tell not useful to the user.

	setResource is dropped in favor of caching the module dictionary once at
start of the JVM. We have a lot of resources we will need and the
setResources method was cumbersome.

	There is a lot of thrashing for the Python module style between C and C++
style. The determining blow was that C++ exception warning showed up when
the proper linkage was given. Thus the perferred style flipped from C++
style to C. Thus the naming style change accordingly.

	In addition to the style change there is also an attempt to isolate symbols
between the different classes. The older style with a formal header that
declares all the symbols at the top encouraged access to the functions and
increased the complexity. Moving to a C style and making everything static
forces the classes to be much more independent.

	With the change to C style there is natural split in CPython class files
between the structure declaration, static methods that implement Python API
functions, the declaration of the type, and the exposed C++ style API used by
the rest of the module.

	There is some thrashing on how much of the C++ wrapper style Python API to
keep. The rewrapping of the API was mainly so support differences between
Python 2.7 and 3.x. So we dropped where we could. Only the JPPyObject which
acts as memory handling device over pure Python style (because Python style
is not exception safe) is strongly needed.

	There is some spacing thrashing between different editors and the continuing
debate of why C was written to have the pointer stick to to the variable
rather than the type. When writing Object* foo it implies that the star
is stuck to type rather than the variable where C reads it as the opposite.
Hence there is the endless churn between what is correct Object *foo and
what we would say in which Object* is actually a type. As Python favors
the former and we currently have the latter that means at some point we
should just have formatter force consistency.

	We introduced Py_IsInstanceSingle. Is is a missing Python API function first
for fast type check method of a single inherited type using the mro. Then
something is singlely inherited we can bypass the whole pile of redirects and
list searchs and just compare if the mro list matches at the same point
counted from the end. As all of our base types are single inherited this
saves time and dodges the more expensive calls that would trigger due to the
PyJPClassMeta overrides.

	We introduced Py_GetAttrDescriptor. This was previously implemented in
Python and was very slow. Python has very good implementations for GetAttr
but unfortunately it has the behavior that it always dereferences
descriptors. Thus it is useless in the case that we need to get the
descriptor from the type tree. We have reimplemented the Python type search
without the descriptor dereferencing behavior. It is not nearly as complete
as the Python method as we only need to consult the dictionary and not handle
every edge case. That of course means that we are much faster.

	As with every rewrite there is the need to cleanup. Anything that wasn’t
reached by the test bench or was identified as being called only from one
location was removed or reencorperated back in into the function that call
it.

JPype 0.7 Core ChangeLog

Here is the “complete” log of the changes I think I made.

Module changes

	Moved Python module objects to namespace PyJP so that they are consistent
with a Python module namespace. Renamed module classes presented to
_jpype extension to PyJP* to match the internal classes. Though not
exactly a standard convention, the types were internal anyway and having
the names match the C structure makes it more clear what resource is being
accessed. It also eliminates the confusion between jpype and _jpype
resources.

	Removed all usage of Capsule from the extension module. This was bridging
between Python versions and had to be replicated on old platforms. As the
capsules were functioning as crippled objects, they could not have methods
of their own. Thus functionality that properly belonged to a specific class
would get pushed to the base class. This affected former capsules of
JPObject, JPProxy, and JPArray. These are now formal classes in the
module as PyJPValue, PyJPProxy, and PyJPArray.

	Moved the initialization of each class to the __init__ function. Thus
rather than creating the resource at the top level _jpype module (such as
_jpype.findClass('cls')), the resource is created by allocating a new
object (such as _jpype.PyJPClass('cls')).

	The presentation of JPArrayClass has been merged as a generic JPClass.
The only requirement for creation of an array instance is that the supplied
PyJPClass satisfy isArray().

	Removed direct dependencies that objects holding resource be exactly the
type in jpype module. This reduces the restrictions in the underlying
Python layer and allows for multiple classes such as JavaArray, JWrapper,
and JavaClass to all be recognized as holding resources. This simplifies
some paths in the jpype module where we needed to simply access a single
method during bootstrapping and we were forced to construct complete
classes necessitating the order of resource loading.

	Remove JPObject concept and replaced it with JPValue. JPValue holds
the type of the object and a jvalue union. Both JavaClass and
JWrapper now point to these classes as __javavalue__. Anything with a
__javavalue__ with type _jpype.PyJPValue is now recognized as being a
Java object.

	Changed the recognization of a JavaClass to any object holding
__javaclass__ with type _jpype.PyJPClass. This allows array classes,
object classes, and wrappers classes to be used together.

	Added hooks to direct convert PyJPClass to a PyJPValue with a type of
java.lang.class and an object to the class. This replaces the need for
calling forName to get to the existing class.

	Changed PyJPField and PyJPMethod to descriptors so that we do not
need to mess with __getattribute__ and __setattr__ in many places.

	Eliminated the unnecessary class bound method.

C++ Reorg

	Reorganized the type tree in the C++ layer to better match the Java
structures.

	Flattened out the redundant layers so that JPType is now JPClass
corresponding to an instance of a jclass.

	JPClass is not the base class. Arrays are now objects and have
base classes and methods.

	Split JPClass into a separate type for each specialized object class for
boxed, java.lang.Object, and java.lang.Class which all required
specialized conversion rules.

	Boxed, string, base java.lang.Object and base java.lang.Class are now
specialized with their required conversion rules.

Path reduction

	Removed HostRef and all of its usage. It was a halfway memory
management method. To be passed around it was being held as a dynamically
allocated pointer type with no static presence for cleanup. This defeats
the point of having a smart point wrapper if the smart pointer is being used
as a pointer itself. Thus it was only as safe as the user applied
conventions rather than safe by design.

	Replaced all the HostRef methods and JPy* Python object wrappers with
a new smart pointer concept (namespace JPPy). This removes the
redundant host and JPy* wrapper layers.

	Removed multiple optimization paths such as bypassing between jchar and
unicode if the size matched. These paths were for speed reasons, but they
could only be tested on particular machines. Thus it was difficult to tell
if something was broken. It is better to have one tested code path
that is slight slower, then a faster path that is busted.

	Removed dead class JPCharString.

	(bug) Replaced all string handling with conversion through UTF8. Java and
Python use different UTF8 encodings and thus those paths that were trying
to short cut directly through from one system to another were badly flawed.
By forcing a conversion to and from each time a Java string or Python string
are passed eliminates conversion problems. This should resolve user issues
having to do with truncating extended unicode characters.

	Combined all code paths in canConvertToJava and convertToJava to use the
JPValue

	Combined code paths from check and get for JPValue, JPClass and
JPProxy get patterns when fetching from Python. Almost always we want
to use the object immediately and just check if we can.

	Removed the entirely redundant Primitive type setRange and getRange.
That code was entirely dead because it could not be reached. Renamed the
direct methods as they now have the same function.

	Removed JPTypeName. This concept will be phased out to
support lambdas. TypeManager now used getCanonicalName().
Transferred responsibility for conversion to native names to Python module
interface.

	Introduced named classes for all specialized instances of classes to be
held in TypeManager namespace. Thus converted most of the “is this type” to
comparison of JPClass* pointers in place of string level comparisons.

	Removed near duplicate methods. JProxy was requesting slightly altered
copies of many conversions to support its usage. These operations could
be supported by just splitting to two existing methods. Thus we could
eliminate a lot of stray methods that served this specialized purpose.

	JPArray is now a method holder rather than the primary object like
JPBoundMethod. All array objects in Python now hold both a __javaarray__
and a __javavalue__. This eliminates need for special paths for
arrays.

	_getClassFor is now overloaded to work with array classes. Thus
asking for a JClass('[java.lang.Object;') will now correctly
return a JavaArrayClass.

	Constructing a string now shortcuts to avoid methodoverload resolution on
new instance if given a Python string.

	Reworked the GIL handling. The previous model was doing all the release
locks on the JPJni calls automatically for almost all jni transactions.
This would be fine, except that many utility functions were using those same
calls regardless of whether is was a good time to release the lock. This
ultra fine grain locking was effectively allowing any call to JPJni methods
to become a break point, including those calls in critical sections such as
ensureTypeCache and TypeManager::findClass. Any time it loaded a class or
looked up a name it could be interrupted and thus end up in a corrupt state.
Thus I moved all of the GIL calls to those places where we call user code on
the type returns and the object constructors. Thus cuts the number of GIL
transactions greatly and eliminates the need to deal with trampling global
resources. The refactor exposed this a bit more because the removal of
TypeName meant that we did a lot more transactions to get the class name.
But that does not mean the flaw was not there before. If our tests cases had
been any more aggressive about creating class instances during execution it
would have overrun the TypeManager table and all would have failed.

	Removed the previous default option to automatically convert
java.lang.String to either a Python string or a unicode when returning
from Java. This does mean some string operations now require calling the
Java string method rather than the Python one. Having strings not convert
but rather remain on the jvm until needed cuts the conversion costs when
working with Java heavy code. I added a caching mech so that if we need to
convert the string multiple times, we don’t pay additional over the previous
option.

	A special toString method was added to PyJPValue to convert Java
strings to Python strings. This can convert Java string resources to
Python ones on request.

Proxy changes

	Proxy as implemented previously held only a pointer to the proxy object
and from this proxy object it lookup up the callable using either a
dictionary or an instance. The majority of the resources were held
by the jpype.Proxy. This was replaced with a more general function
in which the PyJPProxy proxy holds two resources. One is an object
instance and the other is a lookup function that turns the name to a
function definition. This supports the same use cases but eliminates
the need for finding resources by convention. There is no need for
the proxy in Python to have any specific layout other than holding a
PyJPProxy as __javaproxy__. Thus allowing alternive structures
such as Proxy by inheritance to work.

	Memory handling was changes slightly as a result so that the reference
queue is now responsible for cleaning up the proxy. Proxy handle instances
are generated whenever the proxy is passed to Java. Thus we form no
counting loops as the proxy has no reference to the handles and the
handles hold a reference to the proxy.

Exception changes

	Changed all exception paths to use JPypeException exclusively. The prior
system did way to much in the Exception constructors and would themselves
crash if anything unusual happened making changing of the system nearly
prohibitive to debug. Everything bubbles down to toJava and toPython
where we perform all the logging and pass the exception off. This also
centralizes all the handling to one place.

	This pulls all the logic from JPProxy so that we can now reuse that
when returning to any Java jni native implemented function.

	Same thing for Python, but that was already centralized on rethrow.

	Reworked exception macros to include more info and introduced JPStackInfo.
It may be possible to connect all the stack info into the Python traceback
(via a proxy class) to present a more unified error reporting. But this
work is currently incomplete without a Python layer support class.

	Integrated JPStackInfo into tracer to give more complete logs when
debugging.

Code quality

	Applied a source formatter in netbeans. It is not perfect as it tends to
add some extra spaces, but it does make faster work of the refactor.
Custom spacing rules were applied to netbeans to try to minimize the total
changes in the source.

	Improved error handling where possible.

	Rework JPTracer so that reporting from places that do not have a formal
frame or could not properly throw (such as destructors) and still appear in
the trace log. All TRACE macros were moved to JP_ so that were less
likely to hit conflicts. Removed guards that complete disabled Tracer from
compiling when TRACE was not enabled so that unconditional logging for
serious failure such as suppressed exceptions in destructors can report.

	Defensively added TRACE statements whenever entering the module for a
nontrivial action so that errors could be located more quickly.

	Removed MTRACE layer as Java local frame handles all cleaning tasks for
that now.

	Replaced TRACE1, TRACE2, TRACE3 with a variodic argument macro JP_TRACE
because I am too lazy to remember to count.

	Renamed functions to best match the documented corresponding function in
the language it was taken from. Thus making it easier to find the needed
documentation. (Ie JPyString::isString() becomes
JPPyString::check() if the corresponding language concept is
PyString_Check()). This does mean that naming is mixed for the
Java/Python layers but it is better to be able to get the documentation
than be a naming idealist.

	Used javadoc comments on header of base clases. These strings are picked
up by netbeans for document critical usage.

	Moved method implementations and destructors out of headers except in
the case of a truly trivial accessor. This has a small performance loss
because of removal of inline option. This reduces the number of
redundant implementation copies at link time and ensures the virtual
destructor is fixed in a specific object. We can push those back to the
header if there is a compelling need.

jpype module changes

Because these do affect the end user, we have marked them as enhance, change, remove, bug fix, or internal.

General

	(enhance) __all__ added to all modules so that we have a well defined
export rather that leaking symbols everywhere. Eliminated stray imports in
the jpype namespace.

	(enhance) Add @deprecated to _core and marked all functions that are
no longer used appropraitely. Use -Wd to see deprecated function warnings.

	(enhance) Exposed JavaInterface, JavaObject, JavaClass so that they
can be used in issubclass and isinstance statement.
JavaClass.__new__ method was pushed to factory to make it safe for external
use.

	(enhance) mro for Java Classes removes JavaInterface so that
issubclass(cls, JavaInterface) is only true if the class not derived from
JavaObject.

	(enhance) All classes derived from java.lang.Throwable are now usable as
thrown exceptions. No requirement to access special inner classes with
exception types. Exceptions can be raised directly from within
a Python context to be passed to Java when in proxy. Throwables now
use a standard customizer to set their base class to the Python
Exception tree. Deprecated JException

	(enhance) args is a property of java.lang.Throwable containing the
message and the cause if specified.

	(enhance) JChar array now converts to a string and compares with string
properly. Conversion uses range so that it does not try to convert
character by character.

	(remove) JByte array is not a string type. It is not a string in Java
and should not be treated as a string without explicit conversion.
Conversion path was horribly inefficient converting each byte as a Python
object. Test marked as skip.

	(change) Array conversion errors produce TypeError rather than
RunTimeError.

	(enhance) JArray now supports using raw Python types as the specifier for
array types. It will convert to the most appropraite type or return an
error.

	(remove) property conversion customizer is deactivated by default. This
one proved very problematic. It overrided certain customizers, hid
intentionally exposed fields, bloated the dictionary tables, and interferred
with the unwrapping of exception types. We can try to make it an optional
system with import jpype.properties or some such but it will still have all
those problems. Best to kill this misfeature now.

	(enhance) JArray classes now have class_. We can access the component
type. This makes them more consistent with JClass. (required for
testing)

	(enhance) Use of constructor call pattern eliminated the need for use of a
separate factory and type. Thus we are back to the original design in
which we only need to expose a small number of “types”. This was applied to
JArray, JClass, JException, and JObject. Use of isinstance() and
issubclass now supported. The only challenge was keeping box types working.

	(remove) Functions that return a string now return a java.lang.String
rather than converting to Python. Thus when chaining elements together in
Java will get the full benefit matching types. The previous auto convert
has been removed.

	(enhance) java.lang.String now has much more complete set of Python
operations. String conversions are now cached, so the penalty of
converting is kept to a minimum.

Wrappers

	(internal) Rewrote the JWrapper module from scratch to reflect the use i
of JPValue. Renamed _jwrapper to _jtypes. The concept of wrappers
has now been lost internally. All objects and primitives are just values.

	(enhance) Created import module containing all of the symbols needed for
creating types in jpype so that we can support a limited import statement
from jpype.types import *

	(enhance) JString contructor now returns a java.lang.String object.
Removed JStringWrapper as java.lang.String serves its purpose.

	(enhance) JObject now returns an object with the Java type as a functional
object rather than a dead end wrapper. This does allow some redundant
things such as converting a Python class wrapper into a class
JObject(java.lang.String) == java.lang.String.class_ but otherwise seems
good.

	(enhance) ‘JObject’ and ‘JString’ accept 0 arguments to generate a generic
object and empty string.

	Tried to be more consistent about returning errors that are valid in Python.

	Too many or two few arguments to a function will throw a TypeError

	Value conversion out of range will throw OverFlowError

	Value conversions that are the right type but invalid value will
give ValueError (char from string too long)

	Type conversions that cannot be completed should give TypeError.

	Errors setting attributes should give AttributeError such as
trying to set a final field or trying to get an instance field from a
static object.

	Arrays access should produce IndexError on bad range.
(it would be nice if these also mapped to Java errors and the corresponding
errors in Java were derived from the Python error so that we can properly
look for ArrayIndexOutOfBoundsException (derived from IndexException). But
that is too heavy to attempt now.)

	(enhance) JArray, JException and JObject report as JavaClass when
using issubclass.

	(enhance) Short cut for just adding a base class as a customizer.

Internal

	(internal) Changes corresponding to the __init__ rework to match revised
PyJP* classes.

	(internal) Changes corresponding to the capsule removal.

	(internal) Remove SPECIAL_CONSTRUCTOR_KEY as everything that uses it can
recognize a PyJPValue as indicating they are receiving an existing Java
resource as input. All special handling required to construct objects from
within C++ layer were thus eliminated.

	(internal) Removed almost all required resources from Python needing to be
register in _jpype with the exception of getClassMethod.

	(internal) Java class customizers did not need to be deferred until after
the JVM is initialized. Pushing them into the dictionary immediately
fixes issues in which a customizer was not applied to classes during
early bootstrapping. This eliminates a large number of the need for
calling initialize on each jpype module in _core.

	(internal) JArrayClass and JClass are the same for purposes of
Customizers and class tree.

	(internal) Customizer code and dictionary moved to _jcustomizer so that i
it can be shared between Object and Array classes.

	(internal) Converted JavaClass to more Python like “try first, eat an
exception if it fails” philosophy to increase robustness to failure. This
eliminates the problems when a new base class is introduced with a
customizer without setting up a meta class.

	internal/enhance Broke connections between boxed types and wrappers.
User supplied wrappers can implements specified “<type>Value” method.
Wrapper types now have similar methods to boxed types with appropriate
range checks.

	(internal) All $Static meta classes have been eliminated. There is now
only one tree of classes. A single meta class JClass serves as the type
for all classes.

Bugs

	(bug fix) Fixed bug in jpype.imports in which it would not install its
hooks if loaded afer the jvm was started.

	(bug fix) Fixed bug in JBoxed type wrappers in Python which would lead
java.lang.Double and java.lang.Float to have an integer value when
boxed was corrected.

	(bug fix) Fixed bug in JObject that was preventing classes from being
wrapped as objects. Verified a number of test cases in the test suite.

	(bug fix) Reenabled the throw from Java test during proxy. The issue was
that jpype was releasing resources before it could transfer control
a PyErr_Clear removed the reference and thus our throwable was invalid.
It was dastardly to find, but the fix was moving a statement one line up.

Documentation changes

	Documentation of major class methods have been added as well as marker
whereever the underlying assumptions are not reasonably transparent.

	Action items for further work have been marked as FIXME for now.

Incomplete

These tasks had to be pushed over post 0.7 release.

	Finish specialization of JPArray classes for byte[] and char[]

	Deal with fast array conversions misuse of types. int[]<=>float[]

	Direct bridge methods for char[] are currently bypassing the unicode
translation layer. It is unclear what Java does with extended unicode
when dealing with char[].

	Add a system to register a translation customizer so that we do not need to
modify C++ code to add new simple translations like Python date to Java
Instant. These would be installed into the PyJPClass during class
wrapper customization. We will need to make sure each class has a Python
type wrapper cached in ensureTypeCache so we are guaranteed to find
the conversion.

	Add tests for Exception.args

Caller Sensitive Methods

The following methods use the caller sensitive (as of JDK 12):

	java.io.ObjectStreamClass.forClass

	java.io.ObjectStreamField.getType

	java.lang.Class.forName

	java.lang.Class.newInstance

	java.lang.Class.getClassLoader

	java.lang.Class.getEnclosingMethod

	java.lang.Class.getEnclosingConstructor

	java.lang.Class.getDeclaringClass

	java.lang.Class.getEnclosingClass

	java.lang.Class.getClasses

	java.lang.Class.getFields

	java.lang.Class.getMethods

	java.lang.Class.getConstructor

	java.lang.Class.getConstructors

	java.lang.Class.getField

	java.lang.Class.getMethod

	java.lang.Class.getDeclaredClasses

	java.lang.Class.getDeclaredField

	java.lang.Class.getDeclaredFields

	java.lang.Class.getDeclaredMethod

	java.lang.Class.getDeclaredMethods

	java.lang.Class.getDeclaredConstructor

	java.lang.Class.getDeclaredConstructors

	java.lang.Class.getResource

	java.lang.Class.getResourceAsStream

	java.lang.Class.getNestHost

	java.lang.Class.getNestMembers

	java.lang.ClassLoader.getParent

	java.lang.ClassLoader.getPlatformClassLoader

	java.lang.invoke,MethodHandleProxies.asInterfaceInstance

	java.lang.invoke.MethodHandles.lookup

	java.lang.Module.addReads

	java.lang.Module.addExports

	java.lang.Module.addOpens

	java.lang.Module.addUses

	java.lang.Module.getResourceAsStream

	java.lang.Package.getPackage

	java.lang.Package.getPackages

	java.lang.reflect.AccessibleObject.setAccessible

	java.lang.reflect.AccessibleObject.setAccessible

	java.lang.reflect.AccessibleObject.trySetAccessible

	java.lang.reflect.AccessibleObject.canAccess

	java.lang.reflect.Constructor.setAccessible

	java.lang.reflect.Constructor.newInstance

	java.lang.reflect.Field.setAccessible

	java.lang.reflect.Field.get

	java.lang.reflect.Field.getBoolean

	java.lang.reflect.Field.getByte

	java.lang.reflect.Field.getChar

	java.lang.reflect.Field.getShort

	java.lang.reflect.Field.getInt

	java.lang.reflect.Field.getLong

	java.lang.reflect.Field.getFloat

	java.lang.reflect.Field.getDouble

	java.lang.reflect.Field.set

	java.lang.reflect.Field.setBoolean

	java.lang.reflect.Field.setByte

	java.lang.reflect.Field.setChar

	java.lang.reflect.Field.setShort

	java.lang.reflect.Field.setInt

	java.lang.reflect.Field.setLong

	java.lang.reflect.Field.setFloat

	java.lang.reflect.Field.setDouble

	java.lang.reflect.Method.setAccessible

	java.lang.reflect.Method.invoke

	java.lang.reflect.Proxy.getProxyClass

	java.lang.reflect.Proxy.newProxyInstance

	java.lang.reflect.Proxy.getInvocationHandler

	java.lang.Runtime.load

	java.lang.Runtime.loadLibrary

	java.lang.StackWalker.walk

	java.lang.StackWalker.forEach

	java.lang.StackWalker.getCallerClass

	java.lang.System.getLogger

	java.lang.System.getLogger

	java.lang.System.load

	java.lang.System.loadLibrary

	java.lang.Thread.getContextClassLoader

	java.security.AccessController.doPrivileged

	java.security.AccessController.doPrivilegedWithCombiner

	java.util.concurrent.atomic.AtomicIntegerFieldUpdater.newUpdater

	java.util.concurrent.atomic.AtomicLongFieldUpdater.newUpdater

	java.util.concurrent.atomic.AtomicReferenceFieldUpdater.newUpdater

	java.util.ResourceBundle.getBundle

	java.util.ResourceBundle.clearCache

	java.util.ServiceLoader.load

	java.util.ServiceLoader.loadInstalled

	java.util.logging.Logger.getLogger

	java.util.logging.Logger.getLogger

	java.util.logging.Logger.getAnonymousLogger

	java.sql.DriverManager.getConnection

	java.sql.DriverManager.getDriver

	java.sql.DriverManager.deregisterDriver

	java.sql.DriverManager.getDrivers

Release cycle docs

	This project uses bump2version

	See https://medium.com/@williamhayes/versioning-using-bumpversion-4d13c914e9b8

	To start a new cycle use:

	bumpversion patch

	To increment the build number during development:

	bumpversion build

	To release:

	bumpversion release

Full process:
(first copy the checklist to an issue)

	
	[] Start from the release branch

	git checkout release

	
	[] Make a new branch for the release cycle

	git checkout -b releases/{version}

	
	[] Merge the current master with the release

	git pull origin master

	[] Edit doc/CHANGELOG.rst

	
	[] Start a release

	bumpversion release

	
	[] Send the release to be evaluated

	git push

	[] Verify CI on azure

	
	[] Manually trigger a jpype.release on azure

	If successful, download the artifacts for publication.

	
	[] Advance the release pointer

	git checkout release
git pull releases/<version>

	[] Publish the release
- Add draft release on github
- Attach the artifacts to the release.

	[] Start master on a new cycle
- Use a PR to pull release back to master
- git checkout master
- git checkout -b cycle
- git pull master
- bumpversion patch
- Use PR to insert the cycle in master

Last, update this document with any changes in process that were required.

 _static/up.png

_static/comment-bright.png

_images/attach_debugger.png
Debugger: _Java Debugger (PDA)

Connector SocketAttach (Attaches by socket to other VMs)
Transport: dt_socket

Host mt

Port 12999

Timeout [ms]

Help

oK

Cancel

o

o

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 JPype documentation

 		
 Installation

 		
 Binary Install

 		
 Source Install

 		
 Build using pip

 		
 Build and install manually

 		
 If it fails…

 		
 Platform Specific requirements

 		
 Path requirements

 		
 Known Bugs/Limitations

 		
 JPype User Guide

 		
 JPype Introduction

 		
 JPype Use Cases

 		
 The JPype Philosophy

 		
 Languages other than Java

 		
 Alternatives

 		
 About this guide

 		
 JPype Concepts

 		
 Name mangling

 		
 JPype Types

 		
 Stay strong in a weak language

 		
 Method resolution

 		
 Primitive Types

 		
 Objects & Classes

 		
 Importing Java classes

 		
 Type Matching

 		
 Exception Handling

 		
 Controlling the JVM

 		
 Starting the JVM

 		
 Shutting down the JVM

 		
 Customization

 		
 Class Customizers

 		
 Type Conversion Customizers

 		
 Collections

 		
 Iterable

 		
 Iterators

 		
 Collection

 		
 Lists

 		
 Map

 		
 MapEntry

 		
 Set

 		
 Enumeration

 		
 Working with NumPy

 		
 Transfers to Java

 		
 Multidimensional transfers to Java

 		
 Transfers to NumPy

 		
 Buffer backed NumPy arrays

 		
 NumPy Primitives

 		
 Implementing Java interfaces

 		
 Implements

 		
 Proxy Factory

 		
 Proxying Python objects

 		
 Reference Loops

 		
 Concurrent Processing

 		
 Threading

 		
 Synchronization

 		
 Threading examples

 		
 Multiprocessing

 		
 Miscellaneous topics

 		
 Autopep8

 		
 Performance

 		
 Code completion

 		
 Garbage collection

 		
 Using JPype for debugging Java code

 		
 Getting additional diagnostics

 		
 Caller sensitive methods

 		
 JPype Known limitations

 		
 Java QuickStart Guide

 		
 Starting JPype

 		
 Classes/Objects

 		
 Exceptions

 		
 Primitives

 		
 Strings

 		
 Arrays

 		
 Collections

 		
 Reflection

 		
 Implements and Extension

 		
 API Reference

 		
 JVM Functions

 		
 Class importing

 		
 Class Factories

 		
 Java Types

 		
 Threading

 		
 Decorators

 		
 Proxies

 		
 Customized Classes

 		
 Modules

 		
 JPype Imports Module

 		
 JPype Pickle Module

 		
 JPype Beans Module

 		
 JPype Types Module

 		
 JImport

 		
 1) Import of the package path

 		
 2) Import of the package path as a module

 		
 3) Import a class from an object

 		
 Import caveats

 		
 Wild card Imports

 		
 Keyword naming

 		
 Controlling Java package imports

 		
 Limitations

 		
 Changelog

 		
 Developer Guide

 		
 Overview

 		
 History

 		
 Architecture

 		
 jpype module

 		
 resource types

 		
 Bootstrapping

 		
 Factories

 		
 Style

 		
 Customizers

 		
 _jpype CPython module

 		
 PyJPModule module

 		
 _JClass class

 		
 _JMethod class

 		
 _JField class

 		
 _JArray class

 		
 _JMonitor class

 		
 _JValue class

 		
 Java Slots

 		
 CPython API layer

 		
 Exception handling

 		
 Python referencing

 		
 On CPython extensions

 		
 C++ JNI layer

 		
 Memory management

 		
 Type wrappers

 		
 Support classes

 		
 Java native code

 		
 Tracing

 		
 Debugging issues

 		
 Future directions

_static/file.png

_static/logo.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

